Estimating Self-Confidence in Video-Based Learning Using Eye-Tracking and Deep Neural Networks

计算机科学 人工智能 人工神经网络 眼动 跟踪(教育) 深度学习 计算机视觉 深层神经网络 机器学习 心理学 教育学
作者
Ankur Bhatt,Ko Watanabe,Jayasankar Santhosh,Andreas Dengel,Shoya Ishimaru
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/access.2024.3515838
摘要

Self-confidence is a crucial trait that significantly influences performance across various life domains, leading to positive outcomes by enabling quick decision-making and prompt action. Estimating self-confidence in video-based learning is essential as it provides personalized feedback, thereby enhancing learners’ experiences and confidence levels. This study addresses the challenge of self-confidence estimation by comparing traditional machine-learning techniques with advanced deep-learning models. Our study involved a diverse group of thirteen participants (N=13), each of whom viewed and provided responses to seven distinct videos, generating eye-tracking data that was subsequently analyzed to gain insights into their visual attention and behavior. To assess the collected data, we compare three different algorithms: a Long Short-Term Memory (LSTM), a Support Vector Machine (SVM), and a Random Forest (RF), thereby providing a comprehensive evaluation of the data. The achieved outcomes demonstrated that the LSTM model outperformed conventional hand-crafted feature-based methods, achieving the highest accuracy of 76.9% with Leave-One-Category-Out Cross-Validation (LOCOCV) and 70.3% with Leave-One-Participant-Out Cross-Validation (LOPOCV). Our results underscore the superior performance of the deep-learning model in estimating self-confidence in video-based learning contexts compared to hand-crafted feature-based methods. The outcomes of this research pave the way for more personalized and effective educational interventions, ultimately contributing to improved learning experiences and outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qwe31533完成签到,获得积分10
2秒前
2秒前
大个应助屿2采纳,获得30
2秒前
2秒前
3秒前
yelis发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
6秒前
张佳宁发布了新的文献求助10
6秒前
6秒前
尹欣鹤完成签到,获得积分10
7秒前
7秒前
7秒前
lingua发布了新的文献求助200
7秒前
8秒前
9秒前
9秒前
七木发布了新的文献求助10
10秒前
12秒前
苏信怜完成签到 ,获得积分10
12秒前
fantasy发布了新的文献求助10
12秒前
热情爆米花完成签到 ,获得积分10
13秒前
13秒前
purple发布了新的文献求助10
13秒前
14秒前
zzzzzaaw发布了新的文献求助20
14秒前
容止发布了新的文献求助20
14秒前
w1245完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
wendyhaohao发布了新的文献求助30
15秒前
Jasper应助Frank采纳,获得10
15秒前
15秒前
15秒前
16秒前
合适凌晴发布了新的文献求助60
18秒前
深情的羞花完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736967
求助须知:如何正确求助?哪些是违规求助? 5369478
关于积分的说明 15334426
捐赠科研通 4880606
什么是DOI,文献DOI怎么找? 2622984
邀请新用户注册赠送积分活动 1571840
关于科研通互助平台的介绍 1528682