Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes

阴极 材料科学 单晶 电化学 纳米技术 结晶学 化学 电极 电气工程 物理化学 工程类
作者
Jixue Shen,Zhenan Bao,Changwang Hao,Li Xiao,Zhiming Xiao,Xinyou He,Xing Ou
出处
期刊:Green Energy & Environment [Elsevier]
被引量:2
标识
DOI:10.1016/j.gee.2022.11.006
摘要

Benefited from its high process feasibility and controllable costs, binary-metal layered structured LiNi0.8Mn0.2O2 (NM) can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles (EVs) sales, which is considered as the most promising next-generation cathode material for lithium-ion batteries (LIBs). However, the lack of deep understanding on the failure mechanism of NM has seriously hindered its application, especially under the harsh condition of high-voltage without sacrifices of reversible capacity. Herein, single-crystal LiNi0.8Mn0.2O2 is selected and compared with traditional LiNi0.8Co0.1Mn0.1O2 (NCM), mainly focusing on the failure mechanism of Co-free cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic. Specifically, the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition, which exacerbates the distortion of the lattice, mechanical strain changes and exhibits poor electrochemical performance, especially under the high cutoff voltage. Furthermore, the reaction kinetic of NM is impaired due to the absence of Co element, especially at the single-crystal architecture. Whereas, the negative influence of Li/Ni antisite defect is controllable at low current densities, owing to the attenuated polarization. Notably, Co-free NM can exhibit better safety performance than that of NCM cathode. These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials, providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助奋斗采纳,获得10
1秒前
wenruo发布了新的文献求助20
3秒前
SciGPT应助youbin采纳,获得10
3秒前
橙子不摸鱼完成签到,获得积分10
3秒前
gds完成签到,获得积分10
4秒前
开心语儿发布了新的文献求助30
5秒前
无聊的猫完成签到 ,获得积分10
5秒前
Rainnn发布了新的文献求助10
6秒前
6秒前
jiayourui应助Rainnn采纳,获得10
8秒前
8秒前
在水一方应助gds采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得30
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
shinysparrow应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
麻匪胡万完成签到 ,获得积分10
13秒前
13秒前
小钻风完成签到,获得积分10
15秒前
开放灭绝发布了新的文献求助30
16秒前
华仔应助Laneyliu采纳,获得10
16秒前
酷波er应助自信小笼包采纳,获得10
20秒前
20秒前
22秒前
Fury发布了新的文献求助10
24秒前
面向杂志编论文应助奋斗采纳,获得10
24秒前
虞无声发布了新的文献求助10
26秒前
小白杨发布了新的文献求助10
27秒前
Kristina发布了新的文献求助10
28秒前
紫金大萝卜应助啵子采纳,获得20
29秒前
30秒前
lhy完成签到,获得积分10
33秒前
aidiresi发布了新的文献求助10
35秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 500
少脉山油柑叶的化学成分研究 430
Revolutions 400
MUL.APIN: An Astronomical Compendium in Cuneiform 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2454727
求助须知:如何正确求助?哪些是违规求助? 2126360
关于积分的说明 5415796
捐赠科研通 1854984
什么是DOI,文献DOI怎么找? 922513
版权声明 562340
科研通“疑难数据库(出版商)”最低求助积分说明 493597