亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LEGAN: A low-light image enhancement generative adversarial network for industrial internet of smart-cameras

计算机科学 人工智能 背景(考古学) 噪音(视频) 计算机视觉 特征(语言学) 图像(数学) 古生物学 语言学 哲学 生物
作者
Jing Tao,Junliang Wang,Peng Zhang,Jie Zhang,Kai Leung Yung,W.H. Ip
出处
期刊:Internet of things [Elsevier BV]
卷期号:25: 101054-101054 被引量:3
标识
DOI:10.1016/j.iot.2023.101054
摘要

The utilization of smart-cameras in the context of the Internet of Things (IoT) has become increasingly prevalent within smart workshops for performing in-situ quality inspection tasks. However, it is worth noting that these smart-cameras may encounter operational challenges when functioning under low-light conditions. The images acquired in such situation are severely degraded, resulting in the performance decline of the subsequent detection algorithms. Focusing on non-stationary noise compression and detail recovery, this paper constructs a novel enhancement model called LEGAN for the industrial internet of smart-cameras system. Firstly, the input undergoes a decomposition process into two branches using the Harr-wavelet technique. These branches are subsequently encoded independently by a series of compact residual blocks, facilitating effective noise suppression.Secondly, in order to enhance detail recovery, a feature selection module is meticulously designed to extract correlations between image foreground-background and low-high frequency signals, ultimately reconstructing a comprehensive feature map.This enables a multi-scale stepwise up-sampling approach that facilitates image recovery based on the reconstructed feature maps. Lastly, the training phase is supervised by an adversarial loss, comprising MSE loss, VGG loss, and discriminating loss, which ensures a harmonious balance between noise suppression and detail recovery. Comparative experiments clearly show the superiority of the LEGAN in terms of noise compression and detail recovery. Moreover, from an industrial practice perspective, the application of the proposed approach to yarn evenness inspection has proven to be highly effective, significantly enhancing detection accuracy in low-light environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
17秒前
1分钟前
1分钟前
多边棱发布了新的文献求助10
1分钟前
1分钟前
碗碗完成签到,获得积分10
1分钟前
2分钟前
Lucas应助yzbbb采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
yzbbb发布了新的文献求助10
2分钟前
3分钟前
arsenal发布了新的文献求助10
3分钟前
精明凡双应助科研通管家采纳,获得20
3分钟前
艺_完成签到 ,获得积分10
4分钟前
懒得取名字完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
随机科研完成签到,获得积分20
4分钟前
苏梗完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
随机科研发布了新的文献求助30
4分钟前
李李原上草完成签到 ,获得积分0
4分钟前
4分钟前
科目三应助随机科研采纳,获得10
4分钟前
图图发布了新的文献求助10
4分钟前
arsenal发布了新的文献求助10
5分钟前
桐桐应助田20202021采纳,获得10
5分钟前
香蕉觅云应助遍空采纳,获得10
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
5分钟前
田20202021发布了新的文献求助10
5分钟前
偌佟完成签到,获得积分10
6分钟前
mochalv123完成签到 ,获得积分10
6分钟前
科研通AI5应助图南采纳,获得10
6分钟前
6分钟前
图南发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653202
求助须知:如何正确求助?哪些是违规求助? 4039831
关于积分的说明 12494473
捐赠科研通 3730542
什么是DOI,文献DOI怎么找? 2059222
邀请新用户注册赠送积分活动 1089908
科研通“疑难数据库(出版商)”最低求助积分说明 971009