Transfer learning in environmental remote sensing

可解释性 计算机科学 遥感 环境监测 水准点(测量) 领域(数学分析) 比例(比率) 学习迁移 基本事实 土地覆盖 数据科学 机器学习 环境科学 土地利用 地理 地图学 数学分析 土木工程 工程类 环境工程 数学
作者
Yuchi Ma,Shuo Chen,Stefano Ermon,David B. Lobell
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:301: 113924-113924 被引量:273
标识
DOI:10.1016/j.rse.2023.113924
摘要

Machine learning (ML) has proven to be a powerful tool for utilizing the rapidly increasing amounts of remote sensing data for environmental monitoring. Yet ML models often require a substantial amount of ground truth labels for training, and models trained using labeled data from one domain often demonstrate poor performance when directly applied to other domains. Transfer learning (TL) has emerged as a promising strategy to address domain shift and alleviate the need for labeled data. Here we provide the first systematic review of TL studies in environmental remote sensing. We start by defining the different forms of domain shift and then describe five commonly used TL techniques. We then present the results of a systematic search for peer-reviewed articles published between 2017 and 2022, which identified 1676 papers. Applications of TL in remote sensing have increased rapidly, with nearly 10 times more publications in 2022 than in 2017. Across seven categories of applications (land cover mapping, vegetation monitoring, soil property estimation, crop yield prediction, biodiversity monitoring, water resources management, and natural disaster management) we identify several recent successes of TL as well as some remaining research gaps. Finally, we highlight the need to organize benchmark datasets explicitly for TL in remote sensing for model evaluation. We also discuss potential research directions for TL studies in environmental remote sensing, such as realizing scale transfer, improving model interpretability, and leveraging foundation models for remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xuemin发布了新的文献求助10
刚刚
2秒前
2秒前
3秒前
qingmoheng应助leslie采纳,获得10
3秒前
剑舞红颜笑完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
Li发布了新的文献求助10
5秒前
6秒前
111完成签到,获得积分10
6秒前
ZOE应助leslie采纳,获得30
7秒前
Xuemin完成签到,获得积分10
8秒前
大道独行发布了新的文献求助10
8秒前
9秒前
Ava应助zhaoyu采纳,获得10
9秒前
飞快的语蕊完成签到,获得积分10
10秒前
慢慢完成签到,获得积分10
10秒前
手抖的粉恐龙完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
cuiyujia发布了新的文献求助10
13秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
14秒前
莫非安然发布了新的文献求助10
14秒前
善良鱼哟完成签到,获得积分10
15秒前
16秒前
务实寄松发布了新的文献求助10
17秒前
陈秀娟发布了新的文献求助10
19秒前
署前街少年完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
歇洛克发布了新的文献求助10
20秒前
20秒前
Orange应助莫非安然采纳,获得30
22秒前
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379