已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Alliance: All-in-One Spectral-Spatial-Frequency Awareness Foundation Model

作者
Boyu Zhao,Wei Li,Junjie Wang,Yuxiang Zhang,Hong Yang,Haitao Zhao,Ran Tao,Qian Du
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-18
标识
DOI:10.1109/tpami.2025.3639595
摘要

Frequency domain analysis reveals fundamental image patterns difficult to observe in raw pixel values, while avoiding redundant information in original image processing. Although recent remote sensing foundation models (FMs) have made progress in leveraging spatial and spectral information, they have limitations in fully utilizing frequency characteristics that capture hidden features. Existing FMs that incorporate frequency properties often struggle to maintain connections with the original image content, creating a semantic gap that affects downstream performance. To address these challenges, we propose the All-in-One Spectral-Spatial-Frequency Awareness Foundation Model (Alliance), a framework that effectively integrates information across all three domains. Alliance introduces several key innovations: (1) a progressive frequency decoding mechanism inspired by human visual cognition that minimizes multi-domain information gaps while preserving connections between general image information and frequency characteristics, progressively reconstructing from low to mid to high frequencies to extract patterns difficult to observe in raw pixel values; (2) a triple-domain fusion attention module that separately processes amplitude, phase, and spectral-spatial relationships for comprehensive feature integration; and (3) frequency embedding with frequency-aware Cls token initialization and frequency-specific mask token initialization that achieves fine-grained modeling of different frequency band information. Additionally, to evaluate FMs generalizability, we construct the Yellow River dataset, a large-scale multi-temporal collection that introduces challenging cross-domain tasks and establishes more rigorous standards for FMs assessment. Extensive experiments across six downstream tasks demonstrate Alliance's superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助shenhai采纳,获得10
刚刚
明亮元柏发布了新的文献求助30
刚刚
Kuzu发布了新的文献求助10
1秒前
guo完成签到 ,获得积分10
1秒前
1秒前
善学以致用应助ww采纳,获得10
2秒前
闪闪落雁发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
小二郎应助小洋采纳,获得10
5秒前
5秒前
6秒前
隐形曼青应助Lina采纳,获得10
6秒前
7秒前
简单寻冬发布了新的文献求助10
9秒前
9秒前
lilies发布了新的文献求助60
9秒前
十个勤天发布了新的文献求助10
10秒前
little z完成签到,获得积分10
10秒前
Leo发布了新的文献求助10
10秒前
尤静柏发布了新的文献求助30
11秒前
an发布了新的文献求助10
12秒前
Lolo发布了新的文献求助10
12秒前
cc完成签到,获得积分10
13秒前
14秒前
小巧念露发布了新的文献求助80
14秒前
炸茄盒的老头完成签到,获得积分10
15秒前
16秒前
17秒前
随便吧完成签到,获得积分10
18秒前
18秒前
ww发布了新的文献求助10
20秒前
尤静柏完成签到,获得积分10
20秒前
21秒前
闪闪落雁发布了新的文献求助10
24秒前
hhh完成签到,获得积分10
25秒前
26秒前
卡皮巴拉完成签到,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705304
求助须知:如何正确求助?哪些是违规求助? 5162660
关于积分的说明 15244765
捐赠科研通 4859189
什么是DOI,文献DOI怎么找? 2607598
邀请新用户注册赠送积分活动 1558753
关于科研通互助平台的介绍 1516319