Artificial intelligence in clinical pharmacy—A systematic review of current scenario and future perspectives

作者
Saad S. Alqahtani,Santhosh Joseph Menachery,Ali Alshahrani,Bander Albalkhi,Dhfer Alshayban,Muhammad Zahid Iqbal
出处
期刊:Digital health [SAGE Publishing]
卷期号:11: 20552076251388145-20552076251388145
标识
DOI:10.1177/20552076251388145
摘要

Objective Medication prescription errors represent a significant and persistent challenge within healthcare systems globally, constituting a primary focus for clinical pharmacy practice. Additional complexities involve the optimization of drug dosing and the implementation of personalized medicine. This review aims to synthesize the current advancements in artificial intelligence (AI) applications within clinical pharmacy and to discuss future directions for the field. Methods To present this narration, 30 articles were reviewed in total. The literature search was done using electronic databases, for example, PubMed, Medline, and Google Scholar, with the help of some keywords. Only articles published in peer-reviewed journals were included. Results A total of 30 articles that demonstrated the utility of AI-based applications in clinical pharmacy were included for further analysis. Across all included studies, AI was utilized primarily for the detection of adverse drug events, clinical decision support, verification of prescription accuracy, and pharmacometrics. Secondary applications included providing recommendations to pharmacists for medication therapy management and, importantly, predicting the therapeutic response to a given treatment in conjunction with its cost-effectiveness. Conclusion Artificial intelligence-based algorithms have been identified as applicable tools for the early detection of adverse drug events and prescription errors, the prediction of individual drug response, and the design of patient-specific treatment plans. Prior to broad clinical implementation, future multicenter, prospective studies employing standardized clinical endpoints, external validation, and cost-effectiveness analyses are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panzhongjie完成签到,获得积分10
1秒前
千影发布了新的文献求助10
1秒前
Criminology34应助rmbsLHC采纳,获得10
2秒前
向阳完成签到,获得积分10
2秒前
3秒前
燕然都护发布了新的文献求助10
3秒前
4秒前
顾矜应助是小段呀采纳,获得10
4秒前
菜穗子完成签到,获得积分10
4秒前
红豆派发布了新的文献求助30
7秒前
点点完成签到 ,获得积分10
7秒前
Colin完成签到,获得积分10
8秒前
llllll完成签到 ,获得积分10
8秒前
lejunia发布了新的文献求助50
9秒前
5552完成签到,获得积分10
9秒前
10秒前
是玥玥啊完成签到,获得积分10
10秒前
10秒前
嘉子完成签到,获得积分10
10秒前
10秒前
无花果应助千影采纳,获得10
11秒前
12秒前
12秒前
Orange应助科研通管家采纳,获得10
12秒前
kingwill应助科研通管家采纳,获得20
12秒前
辛勤的捕应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
孟祥勤完成签到,获得积分10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
tiatia应助科研通管家采纳,获得10
13秒前
辛勤的捕应助科研通管家采纳,获得10
13秒前
kingwill应助科研通管家采纳,获得20
13秒前
zcl应助科研通管家采纳,获得200
13秒前
Ava应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
泸沽应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
zcl应助科研通管家采纳,获得150
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305727
求助须知:如何正确求助?哪些是违规求助? 4451719
关于积分的说明 13853003
捐赠科研通 4339253
什么是DOI,文献DOI怎么找? 2382411
邀请新用户注册赠送积分活动 1377431
关于科研通互助平台的介绍 1345043