Artificial intelligence for pain classification with the non-invasive pain monitor Anspec-Pro

医学 物理疗法 重症监护医学
作者
T De Grauwe,Mohamed Magdy Ghit,Dana Copoţ,Clara M. Ionescu,Martine Neckebroek
出处
期刊:Acta anaesthesiologica Belgica [CRC Press]
卷期号:73 (Supplement 1): 45-52 被引量:5
标识
DOI:10.56126/73.s1.29
摘要

Background: Reliable measurement of perioperative pain is still an ongoing problem. Pain monitors are commercially available, but to date are not commonly used clinically. Anspec-Pro was developed as a new pain monitor device by Ghent University in 2018. The validation study compared this monitor to the commercially available and validated MedStorm pain monitor. Although the results were comparable with the validated monitor, the absolute results were debatable. Objectives: The data were reanalyzed by means of artificial intelligence (AI), examining the correlation and prediction between the measured data and clinical parameters, to explore if this delivers complementary information that assists pain assessment. Design and setting: A cohort study at Ghent University Hospital. Methods: During two monitoring periods, data were collected from patients while measuring pain with Anspec- Pro. Patients were monitored in the preoperative period and during their postoperative recovery. Measurements by Anspec-Pro were processed with AI, more specifically with a convolutional neural network (CNN), and classified into pain classes. CNN’s were trained both with offline (training prior to monitoring) and online (offline training followed by real-time retraining with incoming data) training methods. Performance was assessed with Receiver Operating Characteristic (ROC) curves. Main outcome measures: Pain values as quantified by Anspec-Pro and NRS values as reported by the patients. Results: Data from 11 patients were used for analysis. Good device performance was seen with offline training with all data and with online retraining every seven minutes with device output and an NRS from the last seven minutes. Conclusions: CNN online training with recent patient data led to good algorithm performance. Hence, our results indicate that there is a potential for AI to deliver useful information that can be used in complementary models of monitoring devices. Trials registration: At clinicaltrials.gov (Identifier: NCT03832764).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
食杂砸发布了新的文献求助10
2秒前
2秒前
2秒前
33发布了新的文献求助10
2秒前
3秒前
华仔应助樊文慧采纳,获得10
4秒前
4秒前
yuxin完成签到 ,获得积分10
4秒前
脑洞疼应助Sakura采纳,获得10
4秒前
4秒前
Li发布了新的文献求助10
5秒前
小橘完成签到,获得积分10
5秒前
tangtang发布了新的文献求助10
5秒前
corleeang完成签到 ,获得积分10
5秒前
温暖霸完成签到,获得积分10
6秒前
xiao礼完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
馍夹菜完成签到,获得积分10
8秒前
coffee333发布了新的文献求助10
9秒前
清晨发布了新的文献求助10
9秒前
lcc发布了新的文献求助10
9秒前
echogj完成签到,获得积分10
9秒前
兰周完成签到,获得积分10
9秒前
荆轲刺秦王完成签到 ,获得积分10
9秒前
anoxia发布了新的文献求助20
10秒前
仲谋驳回了Owen应助
10秒前
可爱的函函应助儒雅谷芹采纳,获得10
10秒前
科研通AI6应助食杂砸采纳,获得10
10秒前
10秒前
Birdy发布了新的文献求助10
10秒前
星辰大海应助Mike采纳,获得10
10秒前
万能图书馆应助梧桐雨210采纳,获得10
11秒前
11秒前
11秒前
12秒前
coffee333完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858