Optimizing Write Fidelity of MRAMs by Alternating Water-Filling Algorithm

计算机科学 算法 磁阻随机存取存储器 忠诚 凸优化 正多边形 数学优化 数学 计算机硬件 随机存取存储器 电信 几何学
作者
Yongjune Kim,Yoocharn Jeon,Hyeokjin Choi,Cyril Guyot,Yuval Cassuto
出处
期刊:IEEE Transactions on Communications [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 5825-5836 被引量:2
标识
DOI:10.1109/tcomm.2022.3190868
摘要

Magnetic random-access memory (MRAM) is a promising memory technology due to its high density, non-volatility, and high endurance. However, achieving high memory fidelity incurs high write-energy costs, which should be reduced for large-scale deployment of MRAMs. In this paper, we formulate a biconvex optimization problem to optimize write fidelity given energy and latency constraints. The basic idea is to allocate non-uniform write pulses depending on the importance of each bit position. The fidelity measure we consider is mean squared error (MSE), for which we optimize write pulses via alternating convex search (ACS). We derive analytic solutions and propose an alternating water-filling algorithm by casting the MRAM’s write operation as communication over parallel channels. Hence, the proposed alternating water-filling algorithm is computationally more efficient than the original ACS while their solutions are identical. Since the formulated biconvex problem is non-convex, both the original ACS and the proposed algorithm do not guarantee global optimality. However, the MSEs obtained by the proposed algorithm are comparable to the MSEs by complicated global nonlinear programming solvers. Furthermore, we prove that our algorithm can reduce the MSE exponentially with the number of bits per word. For an 8-bit accessed word, the proposed algorithm reduces the MSE by a factor of 21. We also evaluate MNIST dataset classification supposing that the model parameters of deep neural networks are stored in MRAMs. The numerical results show that the optimized write pulses can achieve 40% write-energy reduction for the same classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
上官若男应助眼睛大过客采纳,获得10
4秒前
大模型应助二二采纳,获得10
4秒前
brave完成签到 ,获得积分10
4秒前
5秒前
安静的ky完成签到,获得积分10
6秒前
6秒前
清爽的梦秋完成签到,获得积分10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
沅沅发布了新的文献求助10
13秒前
14秒前
14秒前
舒心盼曼发布了新的文献求助10
14秒前
隐形曼青应助风中雨竹采纳,获得10
15秒前
愉快的牛氓完成签到 ,获得积分10
15秒前
我是老大应助jason采纳,获得10
16秒前
18秒前
世间多长发布了新的文献求助10
20秒前
虾虾完成签到,获得积分10
20秒前
20秒前
21秒前
23秒前
12发布了新的文献求助10
23秒前
CodeCraft应助我要发sci采纳,获得10
24秒前
25秒前
王书涵完成签到,获得积分20
25秒前
26秒前
26秒前
无极微光应助小羊采纳,获得20
27秒前
flying发布了新的文献求助10
27秒前
27秒前
小赖想睡觉完成签到,获得积分10
28秒前
李健应助发发发采纳,获得10
28秒前
29秒前
典雅胜发布了新的文献求助10
29秒前
29秒前
热心青易完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335