System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China

大洪水 火车 脆弱性(计算) 中国 危害 环境科学 百年一遇洪水 流域 地理 环境资源管理 水文学(农业) 土木工程 计算机科学 地图学 工程类 化学 计算机安全 考古 有机化学 岩土工程
作者
Weihua Zhu,Kai Liu,Ming Wang,Philip J. Ward,Elco Koks
出处
期刊:Natural Hazards and Earth System Sciences [Copernicus Publications]
卷期号:22 (5): 1519-1540 被引量:4
标识
DOI:10.5194/nhess-22-1519-2022
摘要

Abstract. Floods have negative effects on the reliable operation of transportation systems. In China alone, floods cause an average of ∼1125 h of railway service disruptions per year. In this study, we present a simulation framework to analyse the system vulnerability and risk of the railway system to floods. First, we developed a novel methodology for generating flood events at both the national and river basin scale. Based on flood hazard maps of different return periods, independent flood events are generated using the Monte Carlo sampling method. Combined with network theory and spatial analysis methods, the resulting event set provides the basis for national- and provincial-level railway risk assessments, focusing in particular on train performance loss. Applying this framework to the Chinese railway system, we show that the system vulnerability of the Chinese railway system to floods is highly heterogeneous as a result of spatial variations in the railway topology and traffic flows. Flood events in the Yangtze River basin show the largest impact on the national railway system, with approximately 40 % of the national daily trains being affected by a 100-year flood event in that basin. At the national level, the average percentage of daily affected trains and passengers for the national system is approximately 2.7 % of the total daily number of trips and passengers. The event-based approach presented in this study shows how we can identify critical hotspots within a complex network, taking the first steps in developing climate-resilient infrastructure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助野性的沉鱼采纳,获得10
1秒前
任性铅笔完成签到,获得积分10
1秒前
Red关注了科研通微信公众号
1秒前
euphoria完成签到,获得积分10
1秒前
苹果新儿发布了新的文献求助30
1秒前
feifan123完成签到,获得积分20
3秒前
斯文败类应助啛啛喳喳采纳,获得10
3秒前
3秒前
阔达的凡儿完成签到,获得积分10
3秒前
高兴可乐发布了新的文献求助20
4秒前
4秒前
菜菜完成签到,获得积分10
4秒前
落寞黎昕完成签到 ,获得积分10
5秒前
ding应助欣喜代秋采纳,获得10
6秒前
7秒前
无限的依波完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助可耐的土豆采纳,获得10
8秒前
小羊完成签到,获得积分10
8秒前
慕青应助王彦秀采纳,获得10
8秒前
8秒前
9秒前
zhang完成签到,获得积分10
9秒前
大模型应助橙子采纳,获得10
9秒前
yi关闭了yi文献求助
10秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Mcling完成签到,获得积分10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
蓝莓应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
敏感的鼠标完成签到 ,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796285
求助须知:如何正确求助?哪些是违规求助? 3341253
关于积分的说明 10305258
捐赠科研通 3057801
什么是DOI,文献DOI怎么找? 1677917
邀请新用户注册赠送积分活动 805718
科研通“疑难数据库(出版商)”最低求助积分说明 762740