Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems

冷启动(汽车) 计算机科学 联合学习 冷战 万维网 人工智能 政治学 法学 工程类 航空航天工程 政治
作者
Omar Abdel Wahab,Gaith Rjoub,Jamal Bentahar,Robin Cohen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:601: 189-206 被引量:32
标识
DOI:10.1016/j.ins.2022.04.027
摘要

• Federated learning-based recommendation system for cold-start items. • Trust establishment for recommenders that considers resource utilization and credibility. • Recommender selection strategy based on Double Deep Q Learning . • Simulations on the MovieLens 1M dataset suggest better accuracy compared to two benchmark approaches. Recommendation systems are often challenged by the existence of cold-start items for which no previous rating is available. The standard content-based or collaborative-filtering recommendation approaches may address this problem by asking users to share their data with a central (cloud-based) server, which uses machine learning to predict appropriate ratings on such items. But users may be reluctant to have their (confidential) data shared. Federated learning has been lately capitalized on to address the privacy concerns by enabling an on-device distributed training of a single machine learning model. In this work, we propose a federated learning-based approach to address the item cold-start problem in recommendation systems. The originality of our solution compared to existing federated learning-based solutions comes from (1) applying federated learning specifically to the cold-start problem; (2) proposing a trust mechanism to derive trust scores for the potential recommenders, followed by a double deep Q learning scheduling approach that relies on the trust and energy levels of the recommenders to select the best candidates. Simulations on the MovieLens 1M and Epinions datasets suggest that our solution improves the accuracy of recommending cold-start items and reduces the RMSE, MAE and running time compared to five benchmark approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
同心兆博发布了新的文献求助10
1秒前
1秒前
星辰大海应助dd采纳,获得10
2秒前
小马甲应助zzz采纳,获得10
2秒前
端庄白开水完成签到,获得积分10
2秒前
zy发布了新的文献求助10
2秒前
xy发布了新的文献求助10
2秒前
3秒前
3秒前
Jerry发布了新的文献求助10
3秒前
4秒前
wangyang完成签到 ,获得积分10
5秒前
5秒前
6秒前
科研通AI5应助张三采纳,获得10
6秒前
珏珏子发布了新的文献求助10
6秒前
7秒前
yu发布了新的文献求助10
7秒前
Yue发布了新的文献求助10
7秒前
mm_zxh完成签到,获得积分10
8秒前
Soir完成签到 ,获得积分10
8秒前
8秒前
9秒前
pearsir完成签到,获得积分10
9秒前
AdoreU完成签到,获得积分10
9秒前
10秒前
星辰大海应助tjzhaoll采纳,获得10
11秒前
科研通AI5应助Nancy采纳,获得10
11秒前
木言发布了新的文献求助10
11秒前
叶颤完成签到,获得积分10
11秒前
11秒前
科目三应助xy采纳,获得10
11秒前
12秒前
谭豆豆发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
要受到80斤完成签到,获得积分10
14秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775