Optimal BIS reference functions for closed-loop induction of anesthesia with propofol

人口 异丙酚 参数统计 功能(生物学) 计算机科学 超调(微波通信) 控制理论(社会学) 医学 数学 统计 麻醉 人工智能 控制(管理) 环境卫生 生物 进化生物学 电信
作者
Ryan T. Jarrett,James L. Blair,Matthew S. Shotwell
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105289-105289 被引量:1
标识
DOI:10.1016/j.compbiomed.2022.105289
摘要

During closed-loop induction of anesthesia a closed-loop system will typically administer propofol to bring a patient to a target depth of hypnosis, or reference point, as quickly as possible while minimizing overshoot. Infusion rates are modified in response to patient feedback to maintain the patient at the reference point. In many cases, rapid inductions may be ideal. In some populations and contexts, however, slower inductions may be preferable and result in better patient outcomes. We introduce a framework for explicitly defining and optimizing clinical outcomes of interest during closed-loop inductions. The central innovation is to replace the traditional fixed reference point with a parametric, time-varying reference function. The parameters of the reference function are then selected to minimize an objective function that encapsulates a clinical goal for the population. We consider as objectives 1) combinations of over- and under-shoot of the target depth of hypnosis, 2) time to stably reach the target, and 3) the amount of propofol administered. By incorporating population variability in the objective function, the resulting reference function defines an optimal dosing protocol for a specific outcome in the target population. We illustrate this approach by simulating closed-loop inductions for a constructed population of synthetic patients. The population is split into training and test sets that are used to identify and evaluate optimal reference functions, respectively. Reference function performance is compared to a standard approach of targeting a fixed reference point, corresponding to a rapid-induction strategy. The outcome of interest was almost always minimized in the test set by use of a reference function with less variability between patients. Our simulations suggest that reference functions can be an effective method of achieving clinical goals when induction speed is not the only priority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
强健的冰棍完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI2S应助困于昭昭采纳,获得10
4秒前
季生完成签到,获得积分10
5秒前
6秒前
heycy完成签到,获得积分10
7秒前
lailai完成签到,获得积分10
7秒前
7秒前
七月发布了新的文献求助10
7秒前
耍酷狗关注了科研通微信公众号
8秒前
8秒前
8秒前
123完成签到,获得积分10
8秒前
胡桃夹子发布了新的文献求助10
8秒前
慕容尔安发布了新的文献求助10
9秒前
9秒前
9秒前
hanxuling123发布了新的文献求助10
12秒前
12秒前
13秒前
舒心又亦发布了新的文献求助10
13秒前
14秒前
14秒前
刘芳菲发布了新的文献求助10
15秒前
长安发布了新的文献求助10
15秒前
Fearless发布了新的文献求助10
15秒前
617发布了新的文献求助10
16秒前
17秒前
笨笨芯完成签到,获得积分10
17秒前
17秒前
17秒前
xiaoxiao发布了新的文献求助10
18秒前
SciGPT应助amanda采纳,获得10
18秒前
飞猪发布了新的文献求助10
19秒前
Mary发布了新的文献求助10
19秒前
20秒前
彭于晏应助hanxuling123采纳,获得30
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4186768
求助须知:如何正确求助?哪些是违规求助? 3722634
关于积分的说明 11729967
捐赠科研通 3400520
什么是DOI,文献DOI怎么找? 1865968
邀请新用户注册赠送积分活动 922895
科研通“疑难数据库(出版商)”最低求助积分说明 834276