Deep learning based time-to-event analysis with PET, CT and joint PET/CT for head and neck cancer prognosis

医学 正电子发射断层摄影术 核医学 一致性 头颈部癌 PET-CT 放射科 阶段(地层学) 分割 放射治疗 人工智能 计算机科学 内科学 古生物学 生物
作者
Yiling Wang,Elia Lombardo,Michele Avanzo,Sebastian Zschaek,Julian Weingärtner,Adrien Holzgreve,Nathalie L. Albert,Sebastian Marschner,Giuseppe Fanetti,Giovanni Franchin,Joseph Stancanello,Franziska Walter,Stefanie Corradini,Maximilian Niyazi,Jinyi Lang,Claus Belka,Marco Riboldi,Christopher Kurz,Guillaume Landry
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:222: 106948-106948 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106948
摘要

Recent studies have shown that deep learning based on pre-treatment positron emission tomography (PET) or computed tomography (CT) is promising for distant metastasis (DM) and overall survival (OS) prognosis in head and neck cancer (HNC). However, lesion segmentation is typically required, resulting in a predictive power susceptible to variations in primary and lymph node gross tumor volume (GTV) segmentation. This study aimed at achieving prognosis without GTV segmentation, and extending single modality prognosis to joint PET/CT to allow investigating the predictive performance of combined- compared to single-modality inputs.We employed a 3D-Resnet combined with a time-to-event outcome model to incorporate censoring information. We focused on the prognosis of DM and OS for HNC patients. For each clinical endpoint, five models with PET and/or CT images as input were compared: PET-GTV, PET-only, CT-GTV, CT-only, and PET/CT-GTV models, where -GTV indicates that the corresponding images were masked using the GTV contour. Publicly available delineated CT and PET scans from 4 different Canadian hospitals (293) and the MAASTRO clinic (74) were used for training by 3-fold cross-validation (CV). For independent testing, we used 110 patients from a collaborating institution. The predictive performance was evaluated via Harrell's Concordance Index (HCI) and Kaplan-Meier curves.In a 5-year time-to-event analysis, all models could produce CV HCIs with median values around 0.8 for DM and 0.7 for OS. The best performance was obtained with the PET-only model, achieving a median testing HCI of 0.82 for DM and 0.69 for OS. Compared with the PET/CT-GTV model, the PET-only still had advantages of up to 0.07 in terms of testing HCI. The Kaplan-Meier curves and corresponding log-rank test results also demonstrated significant stratification capability of our models for the testing cohort.Deep learning-based DM and OS time-to-event models showed predictive capability and could provide indications for personalized RT. The best predictive performance achieved by the PET-only model suggested GTV segmentation might be less relevant for PET-based prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助olivia采纳,获得20
2秒前
2秒前
清水完成签到,获得积分10
3秒前
于芋菊完成签到,获得积分0
4秒前
5秒前
6秒前
楠楠2001发布了新的文献求助10
6秒前
7秒前
wenli完成签到,获得积分10
7秒前
8秒前
olivia完成签到,获得积分10
10秒前
10秒前
子车茗应助英俊的小鸽子采纳,获得30
11秒前
13秒前
孙佳婷发布了新的文献求助10
13秒前
大江大河完成签到,获得积分10
14秒前
ColinWine发布了新的文献求助10
14秒前
友好的寒云完成签到,获得积分10
14秒前
完美世界应助youyou采纳,获得30
16秒前
bkagyin应助苻莞采纳,获得10
19秒前
20秒前
我裂开了应助聪慧的访旋采纳,获得10
22秒前
23秒前
24秒前
25秒前
wangfang0228完成签到 ,获得积分10
25秒前
YY发布了新的文献求助10
25秒前
零度发布了新的文献求助10
26秒前
28秒前
29秒前
29秒前
ding应助笑点低的以亦采纳,获得10
29秒前
孙佳婷完成签到 ,获得积分10
30秒前
30秒前
zmy完成签到,获得积分10
31秒前
32秒前
凉拌土豆芽完成签到,获得积分10
32秒前
zho发布了新的文献求助10
33秒前
酷酷的萝应助lq1024424采纳,获得10
34秒前
苻莞发布了新的文献求助10
34秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899749
求助须知:如何正确求助?哪些是违规求助? 3444358
关于积分的说明 10834679
捐赠科研通 3169272
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789191