Automatic defect detection of texture surface with an efficient texture removal network

人工智能 卷积(计算机科学) 计算机科学 纹理压缩 计算机视觉 卷积神经网络 纹理过滤 相似性(几何) 转化(遗传学) 小波变换 模式识别(心理学) 纹理(宇宙学) 双向纹理函数 纹理合成 小波 图像纹理 人工神经网络 图像(数学) 图像处理 生物化学 化学 基因
作者
Ying Liang,Ke Xu,Peng Zhou,Dongdong Zhou
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:53: 101672-101672 被引量:8
标识
DOI:10.1016/j.aei.2022.101672
摘要

Automated defect inspection of texture surface is still a challenging task in the industrial automation field due to the tremendous changes in the appearance of various surface textures. We present a simple but powerful image transformation network to remove textures and highlight defects at full resolution. The simple full convolution network consists only of 3 × 3 regular convolution and several dilated convolution blocks, which makes it compact and able to capture multi-scale features effectively. To further improve the ability of the network to suppress texture and highlight defects, a polynomial loss function combining perceptual loss, structural similarity loss and image gradient loss is proposed. In addition, a semi-automatic annotation method mainly composed of wavelet transform and relative total variation is designed to generate a data set of image pairs containing the original texture image and the desired texture removal image. We conducted experiments on a milled metal surface defect dataset and an open data set containing various textured backgrounds to evaluate the performance of our method. Compared with other convolutional neural network approaches, the results demonstrate the superiority of the proposed method. The method has been applied to the surface defect online detection system of an aluminum ingot milling production line, which effectively improves the surface inspection efficiency and product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助天真的迎天采纳,获得10
刚刚
刚刚
科目三应助carpybala采纳,获得10
1秒前
芙瑞完成签到 ,获得积分10
1秒前
sissi225发布了新的文献求助10
1秒前
粥粥发布了新的文献求助10
1秒前
2秒前
玉玉发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
我是老大应助ip07in13采纳,获得10
4秒前
kingwill应助俏皮的豌豆采纳,获得20
5秒前
李健的小迷弟应助Knight采纳,获得10
5秒前
bkagyin应助赵雷采纳,获得10
6秒前
iNk应助suwan采纳,获得20
6秒前
6秒前
6秒前
7秒前
zhmcbb发布了新的文献求助10
7秒前
动漫大师发布了新的文献求助10
7秒前
7秒前
科研小王完成签到,获得积分10
8秒前
兴奋冷松发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
ssy发布了新的文献求助10
10秒前
袋袋发布了新的文献求助10
10秒前
Akim应助soda采纳,获得10
10秒前
10秒前
芝麻配海带完成签到,获得积分10
11秒前
Joseph完成签到,获得积分10
12秒前
carpybala发布了新的文献求助10
12秒前
科研小王发布了新的文献求助10
13秒前
13秒前
SYLH应助lp采纳,获得10
13秒前
13秒前
动漫大师发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137