散裂
尼亚尔
材料科学
腐蚀
高温合金
冶金
金属
高温腐蚀
氧化物
复合材料
金属间化合物
微观结构
合金
量子力学
物理
中子
摘要
Alumina-forming MAX phases are well-known for their excellent oxidation resistance, rivaling many metallic NiAl, NiCrAl, and FeCrAl counterparts and with upper temperature capability possible to approximately1400C. However a number of limitations have been emerging that need to be acknowledged to permit robust performance in demanding applications. Ti2AlC and Ti3AlC2 possess excellent scale adhesion, cyclic oxidation/moisture/volatility resistance, and TBC compatibility. However they are very sensitive to Al content and flux in order to maintain an exclusive Al2O3 scale without runaway oxidation of ubiquitous TiO2 transient scales. Accelerated oxidation has been shown to occur for Al-depleted, damaged, or roughened surfaces at temperatures less than 1200C. Conversely, Cr2AlC is less sensitive to transients, but exhibits volatile losses at 1200C or above if common Cr7C3 impurity phases are present. Poor scale adhesion is exhibited after oxidation at 1150C or above, where spallation occurs at the Cr7C3 (depletion zone) interface. Delayed spallation is significant and suggests a moisture-induced phenomenon similar to non-adherent metallic systems. Re-oxidation of this surface does not reproduce the initial pure Al2O3 behavior, but initiates a less-protective scale. Cr2AlC has also been shown to have good long term bonding with superalloys at 800C, but exhibits significant Beta-NiAl + Cr7C3 diffusion zones at 1100C and above. This may set limits on Cr2AlC as a high temperature TBC bond coat on Ni-based superalloys, while improving corrosion resistance in lower temperature applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI