Decomposition of Hydrogen Peroxide Catalyzed by AuPd Nanocatalysts during Methane Oxidation to Methanol

纳米材料基催化剂 甲烷 催化作用 分解 化学 甲醇 甲烷厌氧氧化 化学工程 过氧化氢 无机化学 有机化学 工程类
作者
Rui Serra-Maia,F. Marc Michel,Yijin Kang,Eric A. Stach
出处
期刊:ACS Catalysis 卷期号:10 (9): 5115-5123 被引量:25
标识
DOI:10.1021/acscatal.0c00315
摘要

Selective oxidation of methane into energy-dense liquid derivatives at low temperature and pressure is critical for enabling the use of vast natural gas reserves around the world. This has been recently achieved with AuPd nanocatalysts, but the process exhibits accelerated rates of deleterious H2O2 self-decomposition, which results in prohibitive industrial costs. We performed a multivariate analysis of 143 H2O2 decomposition rate measurements reported in the literature to quantify the effect of reaction conditions and catalyst properties in the decomposition of H2O2 at conditions used during methane upgrading. The results show that the reaction is first order in terms of H2O2 concentration and correlates with a larger particle size. The catalytic activity of colloidal AuPd is lower than that of supported AuPd. The effect of methane pressure is practically negligible, which is evidenced by an H2O2 decomposition rate only 42% smaller when the methane pressure is increased more than 6 log-units. Overall, the results indicate that methane oxidation occurs in a significant excess of H2O2, which contributes to its radical-based self-decomposition. Inhibiting the activity of AuPd nanocatalysts toward H2O2 self-decomposition is key to achieving high H2O2 efficiency use for the oxidation of methane to methanol. This can be done by decreasing the concentration of H2O2, using smaller AuPd nanocatalysts, increasing the Au/Pd ratio, using colloidal versus supported nanocatalysts, or increasing the pressure of methane in the reactor. The results of this study provide a path for targeted AuPd catalyst optimization for methane upgrading with improved H2O2 decomposition efficiency and high methane oxidation productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇诗珊完成签到,获得积分10
1秒前
张张张发布了新的文献求助10
2秒前
2秒前
3秒前
xing发布了新的文献求助10
7秒前
852应助云村村民采纳,获得10
8秒前
Bambi发布了新的文献求助10
9秒前
10秒前
张张张完成签到,获得积分10
12秒前
飘逸亦竹发布了新的文献求助10
13秒前
莽哥发布了新的文献求助10
14秒前
14秒前
15秒前
feng发布了新的文献求助10
15秒前
傲娇诗珊发布了新的文献求助10
16秒前
Lucas应助一心扑在搞学术采纳,获得10
17秒前
认真的菲完成签到 ,获得积分10
18秒前
18秒前
susui完成签到 ,获得积分10
19秒前
19秒前
李理发布了新的文献求助10
20秒前
21秒前
21秒前
云村村民发布了新的文献求助10
22秒前
OFish发布了新的文献求助10
26秒前
要减肥念真完成签到,获得积分10
26秒前
健康豆芽菜完成签到 ,获得积分10
27秒前
28秒前
31秒前
32秒前
34秒前
青青子衿发布了新的文献求助10
36秒前
naru完成签到,获得积分10
37秒前
37秒前
科研通AI2S应助mooser采纳,获得10
39秒前
酷酷的锁发布了新的文献求助10
40秒前
naru发布了新的文献求助10
40秒前
mumu完成签到,获得积分10
40秒前
飘逸亦竹完成签到 ,获得积分10
42秒前
Chamsel完成签到,获得积分10
42秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481647
求助须知:如何正确求助?哪些是违规求助? 2144277
关于积分的说明 5469360
捐赠科研通 1866782
什么是DOI,文献DOI怎么找? 927804
版权声明 563039
科研通“疑难数据库(出版商)”最低求助积分说明 496402