Decomposition of Hydrogen Peroxide Catalyzed by AuPd Nanocatalysts during Methane Oxidation to Methanol

纳米材料基催化剂 甲烷 催化作用 分解 化学 甲醇 甲烷厌氧氧化 化学工程 过氧化氢 无机化学 有机化学 工程类
作者
Rui Serra-Maia,F. Marc Michel,Yijin Kang,Eric A. Stach
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:10 (9): 5115-5123 被引量:25
标识
DOI:10.1021/acscatal.0c00315
摘要

Selective oxidation of methane into energy-dense liquid derivatives at low temperature and pressure is critical for enabling the use of vast natural gas reserves around the world. This has been recently achieved with AuPd nanocatalysts, but the process exhibits accelerated rates of deleterious H2O2 self-decomposition, which results in prohibitive industrial costs. We performed a multivariate analysis of 143 H2O2 decomposition rate measurements reported in the literature to quantify the effect of reaction conditions and catalyst properties in the decomposition of H2O2 at conditions used during methane upgrading. The results show that the reaction is first order in terms of H2O2 concentration and correlates with a larger particle size. The catalytic activity of colloidal AuPd is lower than that of supported AuPd. The effect of methane pressure is practically negligible, which is evidenced by an H2O2 decomposition rate only 42% smaller when the methane pressure is increased more than 6 log-units. Overall, the results indicate that methane oxidation occurs in a significant excess of H2O2, which contributes to its radical-based self-decomposition. Inhibiting the activity of AuPd nanocatalysts toward H2O2 self-decomposition is key to achieving high H2O2 efficiency use for the oxidation of methane to methanol. This can be done by decreasing the concentration of H2O2, using smaller AuPd nanocatalysts, increasing the Au/Pd ratio, using colloidal versus supported nanocatalysts, or increasing the pressure of methane in the reactor. The results of this study provide a path for targeted AuPd catalyst optimization for methane upgrading with improved H2O2 decomposition efficiency and high methane oxidation productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
袁融发布了新的文献求助10
1秒前
zxy完成签到,获得积分10
2秒前
4秒前
4秒前
微笑枫叶发布了新的文献求助10
4秒前
Zzz完成签到 ,获得积分10
4秒前
小骁同学完成签到,获得积分10
6秒前
7秒前
zoey完成签到,获得积分10
7秒前
zzz发布了新的文献求助10
8秒前
8秒前
11秒前
金文龙完成签到,获得积分10
11秒前
bkagyin应助陶醉的夜绿采纳,获得10
14秒前
16秒前
ll完成签到 ,获得积分10
16秒前
酷炫的元正完成签到,获得积分20
16秒前
17秒前
cdercder应助明亮的皮皮虾采纳,获得20
18秒前
18秒前
怡然雨灵关注了科研通微信公众号
22秒前
22秒前
23秒前
ding应助安白采纳,获得10
23秒前
科研渣渣小草根完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
27秒前
丫丫发布了新的文献求助10
27秒前
奇奇怪怪发布了新的文献求助10
28秒前
30秒前
30秒前
balabala发布了新的文献求助10
32秒前
微笑枫叶完成签到 ,获得积分20
34秒前
怡然雨灵发布了新的文献求助10
35秒前
未晚完成签到,获得积分10
35秒前
anasy完成签到,获得积分0
36秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367840
关于积分的说明 10447987
捐赠科研通 3087298
什么是DOI,文献DOI怎么找? 1698552
邀请新用户注册赠送积分活动 816826
科研通“疑难数据库(出版商)”最低求助积分说明 769973