Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images

医学 甲状腺结节 鉴别诊断 接收机工作特性 置信区间 甲状腺 放射科 超声波 卷积神经网络 无线电技术 深度学习 人工智能 病理 内科学 计算机科学
作者
Hui Zhou,Yinhua Jin,Lei Dai,Meiwu Zhang,Yuqin Qiu,Kun Wang,Jie Tian,Jianjun Zheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:127: 108992-108992 被引量:77
标识
DOI:10.1016/j.ejrad.2020.108992
摘要

Abstract

Purpose

We aimed to propose a highly automatic and objective model named deep learning Radiomics of thyroid (DLRT) for the differential diagnosis of benign and malignant thyroid nodules from ultrasound (US) images.

Methods

We retrospectively enrolled and finally include US images and fine-needle aspiration biopsies from 1734 patients with 1750 thyroid nodules. A basic convolutional neural network (CNN) model, a transfer learning (TL) model, and a newly designed model named deep learning Radiomics of thyroid (DLRT) were used for the investigation. Their diagnostic accuracy was further compared with human observers (one senior and one junior US radiologist). Moreover, the robustness of DLRT over different US instruments was also validated. Analysis of receiver operating characteristic (ROC) curves were performed to calculate optimal area under it (AUC) for benign and malignant nodules. One observer helped to delineate the nodules.

Results

AUCs of DLRT were 0.96 (95% confidence interval [CI]: 0.94-0.98), 0.95 (95% confidence interval [CI]: 0.93-0.97) and 0.97 (95% confidence interval [CI]: 0.95-0.99) in the training, internal and external validation cohort, respectively, which were significantly better than other deep learning models (P < 0.01) and human observers (P < 0.001). No significant difference was found when applying DLRT on thyroid US images acquired from different US instruments.

Conclusions

DLRT shows the best overall performance comparing with other deep learning models and human observers. It holds great promise for improving the differential diagnosis of benign and malignant thyroid nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助称心小兔子采纳,获得10
1秒前
1秒前
美肥橙完成签到,获得积分10
1秒前
1秒前
英勇熠彤发布了新的文献求助10
1秒前
深情安青应助皮代谷采纳,获得30
2秒前
挚zhi发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
天天快乐应助SSQY采纳,获得10
2秒前
赵哈哈找文献完成签到,获得积分10
2秒前
曾绍炜发布了新的文献求助10
3秒前
JamesTYD发布了新的文献求助10
3秒前
赵雷发布了新的文献求助10
3秒前
馒头发布了新的文献求助30
4秒前
4秒前
Akim应助yyy采纳,获得10
4秒前
凉月发布了新的文献求助10
5秒前
我不会拉杆完成签到,获得积分10
5秒前
hanshuo4400发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
祝愿发布了新的文献求助10
6秒前
7秒前
7秒前
文静的峻熙完成签到,获得积分10
8秒前
小蘑菇应助叮咚鸡采纳,获得10
8秒前
医文轩完成签到,获得积分10
8秒前
顾矜应助90采纳,获得10
9秒前
weiwei发布了新的文献求助10
9秒前
跳跃的聪展完成签到,获得积分20
9秒前
rerwre完成签到,获得积分10
9秒前
天天快乐应助ff采纳,获得10
10秒前
10秒前
10秒前
科研助手6给Swilder的求助进行了留言
10秒前
qwert完成签到,获得积分10
11秒前
长庚完成签到,获得积分10
11秒前
11秒前
Zhao_Kai完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789084
求助须知:如何正确求助?哪些是违规求助? 3334196
关于积分的说明 10267701
捐赠科研通 3050439
什么是DOI,文献DOI怎么找? 1674012
邀请新用户注册赠送积分活动 802396
科研通“疑难数据库(出版商)”最低求助积分说明 760570