Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images

医学 甲状腺结节 鉴别诊断 甲状腺 放射科 超声波 无线电技术 病理 内科学
作者
Hui Zhou,Yinhua Jin,Lei Dai,Meiwu Zhang,Yuqin Qiu,Kun Wang,Jie Tian,Jianjun Zheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:127: 108992-108992 被引量:92
标识
DOI:10.1016/j.ejrad.2020.108992
摘要

Abstract

Purpose

We aimed to propose a highly automatic and objective model named deep learning Radiomics of thyroid (DLRT) for the differential diagnosis of benign and malignant thyroid nodules from ultrasound (US) images.

Methods

We retrospectively enrolled and finally include US images and fine-needle aspiration biopsies from 1734 patients with 1750 thyroid nodules. A basic convolutional neural network (CNN) model, a transfer learning (TL) model, and a newly designed model named deep learning Radiomics of thyroid (DLRT) were used for the investigation. Their diagnostic accuracy was further compared with human observers (one senior and one junior US radiologist). Moreover, the robustness of DLRT over different US instruments was also validated. Analysis of receiver operating characteristic (ROC) curves were performed to calculate optimal area under it (AUC) for benign and malignant nodules. One observer helped to delineate the nodules.

Results

AUCs of DLRT were 0.96 (95% confidence interval [CI]: 0.94-0.98), 0.95 (95% confidence interval [CI]: 0.93-0.97) and 0.97 (95% confidence interval [CI]: 0.95-0.99) in the training, internal and external validation cohort, respectively, which were significantly better than other deep learning models (P < 0.01) and human observers (P < 0.001). No significant difference was found when applying DLRT on thyroid US images acquired from different US instruments.

Conclusions

DLRT shows the best overall performance comparing with other deep learning models and human observers. It holds great promise for improving the differential diagnosis of benign and malignant thyroid nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
贵金属LiLi完成签到,获得积分10
刚刚
Emma应助悲凉的孤萍采纳,获得10
1秒前
1秒前
Jasper应助MOLV采纳,获得10
1秒前
1秒前
慕青应助free采纳,获得10
1秒前
李健的粉丝团团长应助wxy采纳,获得10
1秒前
2秒前
星辰大海应助HDrinnk采纳,获得10
2秒前
今后应助靳欣妍采纳,获得10
2秒前
烂漫夏槐完成签到,获得积分10
3秒前
蛙蛙完成签到,获得积分10
3秒前
ckmen5完成签到,获得积分10
3秒前
Orange应助落寞仰采纳,获得10
5秒前
5秒前
5秒前
CipherSage应助疯狂大泡芙采纳,获得10
5秒前
一半明媚发布了新的文献求助10
5秒前
6秒前
haifenghou发布了新的文献求助10
7秒前
7秒前
8秒前
桐桐应助不一采纳,获得10
8秒前
8秒前
ckmen5发布了新的文献求助10
8秒前
9秒前
9秒前
天天快乐应助南城花开采纳,获得10
9秒前
9秒前
佳佳完成签到,获得积分20
9秒前
小笛子1996发布了新的文献求助10
10秒前
Miaochen发布了新的文献求助10
10秒前
1212431发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
小兰花发布了新的文献求助10
12秒前
wandong应助yawnzzn9采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4064684
求助须知:如何正确求助?哪些是违规求助? 3603028
关于积分的说明 11443568
捐赠科研通 3325915
什么是DOI,文献DOI怎么找? 1828427
邀请新用户注册赠送积分活动 898779
科研通“疑难数据库(出版商)”最低求助积分说明 819230