Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules

计算机科学 无线 稳健性(进化) 频道(广播) 计算机工程 实时计算 人工智能 计算机网络 电信 化学 生物化学 基因
作者
Jialong Xu,Bo Ai,Wei Chen,Ang Yang,Peng Sun,Miguel R. D. Rodrigues
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (4): 2315-2328 被引量:302
标识
DOI:10.1109/tcsvt.2021.3082521
摘要

Recent research on joint source channel coding (JSCC) for wireless\ncommunications has achieved great success owing to the employment of deep\nlearning (DL). However, the existing work on DL based JSCC usually trains the\ndesigned network to operate under a specific signal-to-noise ratio (SNR)\nregime, without taking into account that the SNR level during the deployment\nstage may differ from that during the training stage. A number of networks are\nrequired to cover the scenario with a broad range of SNRs, which is\ncomputational inefficiency (in the training stage) and requires large storage.\nTo overcome these drawbacks our paper proposes a novel method called Attention\nDL based JSCC (ADJSCC) that can successfully operate with different SNR levels\nduring transmission. This design is inspired by the resource assignment\nstrategy in traditional JSCC, which dynamically adjusts the compression ratio\nin source coding and the channel coding rate according to the channel SNR. This\nis achieved by resorting to attention mechanisms because these are able to\nallocate computing resources to more critical tasks. Instead of applying the\nresource allocation strategy in traditional JSCC, the ADJSCC uses the\nchannel-wise soft attention to scaling features according to SNR conditions. We\ncompare the ADJSCC method with the state-of-the-art DL based JSCC method\nthrough extensive experiments to demonstrate its adaptability, robustness and\nversatility. Compared with the existing methods, the proposed method takes less\nstorage and is more robust in the presence of channel mismatch.\n

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Lothar采纳,获得10
1秒前
1秒前
ycd发布了新的文献求助10
2秒前
5秒前
Lucas应助小阁老来啦采纳,获得10
6秒前
Ressia0727发布了新的文献求助10
6秒前
现实的飞风完成签到,获得积分10
8秒前
共享精神应助GGBoy采纳,获得10
9秒前
RKTTKT应助小白采纳,获得20
11秒前
文艺的平露完成签到,获得积分20
11秒前
辛木完成签到 ,获得积分10
12秒前
如意山蝶完成签到 ,获得积分10
13秒前
14秒前
Ressia0727完成签到,获得积分10
14秒前
14秒前
明月完成签到 ,获得积分10
15秒前
迷路达完成签到,获得积分10
15秒前
16秒前
明亮青梦发布了新的文献求助10
16秒前
王颖完成签到 ,获得积分10
20秒前
21秒前
22秒前
ZZZ完成签到,获得积分20
23秒前
小白完成签到,获得积分10
24秒前
微笑幻波完成签到,获得积分10
24秒前
执着的以筠完成签到,获得积分10
25秒前
26秒前
zz完成签到,获得积分10
27秒前
哒哒哒完成签到 ,获得积分10
27秒前
27秒前
Hello应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
Jasper应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339044
求助须知:如何正确求助?哪些是违规求助? 4475985
关于积分的说明 13930102
捐赠科研通 4371418
什么是DOI,文献DOI怎么找? 2401804
邀请新用户注册赠送积分活动 1394843
关于科研通互助平台的介绍 1366677