已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Health effects of air pollutant mixtures on overall mortality among the elderly population using Bayesian kernel machine regression (BKMR)

百分位 四分位间距 污染物 环境卫生 人口 医学 人口学 臭氧 空气污染物 逻辑回归 环境科学 统计 空气污染 数学 地理 生物 气象学 生态学 社会学
作者
Haomin Li,Wenying Deng,Raphael Small,Joel Schwartz,Jeremiah Zhe Liu,Liuhua Shi
出处
期刊:Chemosphere [Elsevier]
卷期号:286 (Pt 1): 131566-131566 被引量:51
标识
DOI:10.1016/j.chemosphere.2021.131566
摘要

It is well documented that fine particles matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) are associated with a range of adverse health outcomes. However, most epidemiologic studies have focused on understanding their additive effects, despite that individuals are exposed to multiple air pollutants simultaneously that are likely correlated with each other. Therefore, we applied a novel method - Bayesian Kernel machine regression (BKMR) and conducted a population-based cohort study to assess the individual and joint effect of air pollutant mixtures (PM2.5, O3, and NO2) on all-cause mortality among the Medicare population in 15 cities with 656 different ZIP codes in the southeastern US. The results suggest a strong association between pollutant mixture and all-cause mortality, mainly driven by PM2.5. The positive association of PM2.5 with mortality appears stronger at lower percentiles of other pollutants. An interquartile range change in PM2.5 concentration was associated with a significant increase in mortality of 1.7 (95% CI: 0.5, 2.9), 1.6 (95% CI: 0.4, 2.7) and 1.4 (95% CI: 0.1, 2.6) standard deviations (SD) when O3 and NO2 were set at the 25th, 50th, and 75th percentiles, respectively. BKMR analysis did not identify statistically significant interactions among PM2.5, O3, and NO2. However, since the small sub-population might weaken the study power, additional studies (in larger sample size and other regions in the US) are in need to reinforce the current finding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助qq1215采纳,获得10
刚刚
LeungYM完成签到 ,获得积分10
3秒前
3秒前
草上飞完成签到 ,获得积分10
6秒前
NexusExplorer应助龚广山采纳,获得10
6秒前
Yhyi发布了新的文献求助30
7秒前
zxx完成签到,获得积分10
8秒前
无花果应助魔幻冷风采纳,获得10
8秒前
fx完成签到 ,获得积分10
10秒前
我是老大应助十八稀采纳,获得10
11秒前
wang1030完成签到 ,获得积分10
11秒前
潇洒丸子发布了新的文献求助50
16秒前
一丁雨完成签到,获得积分10
17秒前
zzz完成签到,获得积分10
18秒前
小土豆完成签到 ,获得积分10
19秒前
19秒前
20秒前
211JZH完成签到 ,获得积分10
20秒前
22秒前
1816013153发布了新的文献求助30
23秒前
hjklkkk完成签到,获得积分10
25秒前
十八稀发布了新的文献求助10
27秒前
犹豫梦菡完成签到 ,获得积分10
27秒前
27秒前
29秒前
31秒前
自由的中蓝完成签到 ,获得积分10
32秒前
CipherSage应助hanged采纳,获得10
34秒前
威武灵阳完成签到,获得积分10
35秒前
大模型应助youlinn采纳,获得30
35秒前
35秒前
Hello应助Moment采纳,获得10
36秒前
40秒前
鱼鱼和石头完成签到 ,获得积分10
40秒前
40秒前
Sasuke发布了新的文献求助10
40秒前
十八稀完成签到,获得积分20
42秒前
picapica668完成签到,获得积分10
42秒前
42秒前
甜甜的以筠完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309