GPENs: Graph Data Learning With Graph Propagation-Embedding Networks

嵌入 图嵌入 理论计算机科学 计算机科学 特征学习 图形 拓扑图论 人工智能 电压图 折线图
作者
Bo Jiang,Leiling Wang,Jian Cheng,Jin Tang,Bin Luo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 3925-3938 被引量:1
标识
DOI:10.1109/tnnls.2021.3120100
摘要

Compact representation of graph data is a fundamental problem in pattern recognition and machine learning area. Recently, graph neural networks (GNNs) have been widely studied for graph-structured data representation and learning tasks, such as graph semi-supervised learning, clustering, and low-dimensional embedding. In this article, we present graph propagation-embedding networks (GPENs), a new model for graph-structured data representation and learning problem. GPENs are mainly motivated by 1) revisiting of traditional graph propagation techniques for graph node context-aware feature representation and 2) recent studies on deeply graph embedding and neural network architecture. GPENs integrate both feature propagation on graph and low-dimensional embedding simultaneously into a unified network using a novel propagation-embedding architecture. GPENs have two main advantages. First, GPENs can be well-motivated and explained from feature propagation and deeply learning architecture. Second, the equilibrium representation of the propagation-embedding operation in GPENs has both exact and approximate formulations, both of which have simple closed-form solutions. This guarantees the compactivity and efficiency of GPENs. Third, GPENs can be naturally extended to multiple GPENs (M-GPENs) to address the data with multiple graph structures. Experiments on various semi-supervised learning tasks on several benchmark datasets demonstrate the effectiveness and benefits of the proposed GPENs and M-GPENs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CyrusSo524应助Seanagi采纳,获得150
刚刚
情怀应助haui采纳,获得10
1秒前
领导范儿应助卷一卷采纳,获得10
1秒前
Akim应助zzuwxj采纳,获得10
1秒前
追寻念云完成签到 ,获得积分10
2秒前
实验大牛完成签到,获得积分10
7秒前
10秒前
清爽老九应助迷你的菲鹰采纳,获得20
10秒前
NexusExplorer应助乔心采纳,获得10
14秒前
归尘发布了新的文献求助30
15秒前
16秒前
乐乐应助nylon采纳,获得10
21秒前
卷一卷发布了新的文献求助10
21秒前
x1完成签到,获得积分10
30秒前
34秒前
凉小远完成签到,获得积分10
35秒前
wangli发布了新的文献求助10
35秒前
mirrovo发布了新的文献求助10
40秒前
Karrisa完成签到,获得积分10
41秒前
42秒前
44秒前
panda发布了新的文献求助10
44秒前
45秒前
rickplug发布了新的文献求助30
46秒前
大个应助lsy采纳,获得10
47秒前
卷一卷完成签到,获得积分10
48秒前
Raine完成签到,获得积分10
49秒前
zzuwxj发布了新的文献求助10
49秒前
zjh发布了新的文献求助10
51秒前
领导范儿应助卷一卷采纳,获得10
54秒前
55秒前
北斋完成签到,获得积分10
55秒前
59秒前
1分钟前
1分钟前
Lucas应助yuaaaann采纳,获得10
1分钟前
1111发布了新的文献求助10
1分钟前
lsy发布了新的文献求助10
1分钟前
Anoxia发布了新的文献求助10
1分钟前
科研通AI5应助wangbq采纳,获得20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040880
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649