Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield

高光谱成像 多光谱图像 遥感 数学 均方误差 决定系数 统计 光谱带 模式识别(心理学) 地理 人工智能 计算机科学
作者
Fumin Wang,Qiuxiang Yi,Jinghui Hu,Lili Xie,Xiaoping Yao,Tianyue Xu,Jueyi Zheng
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:102: 102397-102397 被引量:104
标识
DOI:10.1016/j.jag.2021.102397
摘要

The speedy development of UAV (Unmanned Aerial Vehicle) has provided more data choices for crop yield estimation. In most cases, spectral information derived from multispectral or hyperspectral images is used alone for yield estimation, while variables that contain spatial information such as textural measures were not considered. As UAV can acquire images with spatial resolution at centimeter-level, which contain rich spatial information of observed objects, the test of textural measures in improving yield estimation becomes possible. In this study, UAV-based hyperspectral images of rice in the east of China were acquired in 2017, 2018 and 2019 three consecutive year during rice growing seasons. Eight gray level co-occurrence matrix (GLCM) based texture measures were derived, and all two band combinations of these textural measures as well as spectral reflectance in three types (normalized type, differential type and simple ratio type) were calculated to developing textural and spectral index. Grain yield estimation models were established using spectral indices alone and spectral indices combining textural measures, respectively. The results show that models based on spectral indices combining textural measures all performed better than these using spectral indices alone, with coefficient of determination R2 of the best model greater than 0.8, RMSE (Root Mean Square Error) of 0.421 Mg ha−1 and MAPE (Mean Absolute Percentage Error) of 4.66% for calibration results, and 0.521 Mg ha−1 and 6.63% for validation results. Meanwhile, spectral indices combining textural measures can adjust the problems of overestimation and underestimation in models developed with spectral indices alone. This kind of improvement is especially obvious when grain yield is below 5.0 Mg ha−1 or above 8.0 Mg ha−1. Besides, the estimation accuracy of the model based on spectral index combining textural measure at the booting stage was equivalent to the model based on spectral indices at the booting and heading stages, indicating that textural measures may be helpful in monitoring grain yield at an earlier stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LF发布了新的文献求助10
刚刚
研友_nEj9DZ发布了新的文献求助30
刚刚
xia发布了新的文献求助10
1秒前
1秒前
lixiaolu发布了新的文献求助60
1秒前
echo完成签到,获得积分10
2秒前
李爱国应助chang采纳,获得10
3秒前
小作坊钳工完成签到,获得积分10
3秒前
酷波er应助爱笑夜蕾采纳,获得10
3秒前
sugus发布了新的文献求助10
3秒前
Mic完成签到,获得积分10
3秒前
风巽雷震之歌完成签到 ,获得积分10
4秒前
zzt完成签到,获得积分10
4秒前
jyzxzr完成签到,获得积分10
5秒前
幸运星完成签到 ,获得积分10
5秒前
科研通AI5应助活力的映阳采纳,获得10
5秒前
诺诺发布了新的文献求助10
6秒前
杰克李李完成签到,获得积分10
6秒前
6秒前
科研通AI5应助薛仁贵采纳,获得10
6秒前
ymx完成签到,获得积分10
6秒前
LF完成签到,获得积分10
7秒前
guci完成签到,获得积分10
7秒前
8秒前
彬瑞发布了新的文献求助10
8秒前
8秒前
上官若男应助xiaoqi采纳,获得10
8秒前
科研通AI2S应助zuitong采纳,获得10
8秒前
9秒前
xia完成签到,获得积分10
9秒前
9秒前
zz完成签到,获得积分10
10秒前
笨笨芯发布了新的文献求助10
10秒前
zzt发布了新的文献求助10
10秒前
Akim应助危机的安青采纳,获得10
11秒前
orixero应助amwlsai采纳,获得10
11秒前
12秒前
12秒前
希望天下0贩的0应助luca采纳,获得10
13秒前
李健应助日生采纳,获得10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978