A Pipeline Leak Detection and Localization Approach Based on Ensemble TL1DCNN

计算机科学 管道(软件) 卷积神经网络 人工智能 混淆矩阵 泄漏 机器学习 粒子群优化 数据挖掘 学习迁移 集合(抽象数据类型) 任务(项目管理) 模式识别(心理学) 领域(数学分析) 集成学习 工程类 数学分析 数学 系统工程 环境工程 程序设计语言
作者
Mengfei Zhou,Yanhui Yang,Yinze Xu,Yinchao Hu,Yijun Cai,Junjie Lin,Haitian Pan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 47565-47578 被引量:52
标识
DOI:10.1109/access.2021.3068292
摘要

There is an increasing need for timely pipeline leak detection and localization methods, pipeline leak could lead to not only the loss of the goods but also considerable environmental and economic problems. With the rapid development of hardware and software, the pipeline leak detection and localization algorithms have been widely researched and applied in many Fields. However, traditional methods are usually limited by extracting features manually, which is inefficient and time-consuming. Convolutional neuron network is an effective method to extract features automatically. In this paper, a novel ensemble transfer learning one-dimension convolutional neural network (TL1DCNN) for the pipeline leak detection and localization is proposed. The TL1DCNN plays the role of base learner. The results of a set of obtained base learners are integrated to achieve the task of pipeline leak detection and localization. Firstly, one-dimension convolutional neural network (1DCNN) models with different parameters are pretrained with source domain data. A small learning rate is set to retrain the above 1DCNN models for target task with target domain data in order to obtain TL1DCNN base learners. Then, the four ensemble strategies with different number base learners whose ensemble weights are optimized by particle swarm optimization algorithm are obtained by minimizing the sum of similarity. The dataset simulated by pipeline network model is used to evaluate the effectiveness of the proposed approach. The indicators such as classification accuracy, precision, recall, F_score and confusion matrix are used to compare the proposed approach with traditional methods and other deep learning methods. The experimental results show that the performance of the proposed approach is superior to other compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ完成签到,获得积分10
刚刚
1秒前
小二郎应助Myprince采纳,获得10
2秒前
cacy_zhou完成签到,获得积分10
2秒前
2秒前
town1223应助科研通管家采纳,获得10
3秒前
Leif应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Rasolie完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
5秒前
feifei完成签到,获得积分10
5秒前
6秒前
6秒前
9秒前
Lucas应助wrx采纳,获得10
9秒前
王肄博发布了新的文献求助10
11秒前
火星上玫瑰完成签到,获得积分10
12秒前
16秒前
学习使我快乐1917完成签到,获得积分10
17秒前
18秒前
wrx发布了新的文献求助10
19秒前
19秒前
科研通AI5应助感动的念双采纳,获得10
19秒前
mj发布了新的文献求助10
21秒前
dyh0521发布了新的文献求助10
21秒前
奥黛丽赫本完成签到,获得积分10
22秒前
22秒前
迅速勒发布了新的文献求助10
24秒前
宋嘉新完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
科研通AI5应助万尧采纳,获得10
27秒前
sscss发布了新的文献求助10
27秒前
Chengli_jian发布了新的文献求助30
28秒前
Dr大壮完成签到,获得积分10
29秒前
阿南发布了新的文献求助10
30秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848752
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568084
捐赠科研通 3112149
什么是DOI,文献DOI怎么找? 1715102
邀请新用户注册赠送积分活动 825561
科研通“疑难数据库(出版商)”最低求助积分说明 775663