Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering

惰性 储能 电化学 阴极 掺杂剂 材料科学 化学工程 惰性气体 电池(电) 纳米技术 无机化学 化学 电极 兴奋剂 工程类 物理 光电子学 有机化学 复合材料 功率(物理) 量子力学 物理化学
作者
Peifeng Yu,Jianxian Zhou,Mingtao Zheng,Mianrui Li,Hang Hu,Yong Xiao,Yingliang Liu,Yeru Liang
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:594: 540-549 被引量:55
标识
DOI:10.1016/j.jcis.2021.03.071
摘要

Aqueous zinc ion battery constitutes a safe, stable and promising next-generation energy storage device, but suffers the lack of suitable host compounds for zinc ion storage. Development of a facile way to emerging cathode materials is strongly requested toward superior electrochemical activities and practical applications. Herein, defect engineering, i.e., simultaneous introduction of nitrogen dopant and oxygen vacancy into commercial and low-cost MnO, is proposed as a positive strategy to activate the originally inert phase for kinetically propelling its zinc ion storage capability. Both experimental characterization and theoretical calculations demonstrate that the nitrogen dopant significantly improves the electric conductivity of electrochemical inert MnO. Simultaneously, the oxygen vacancy creates sufficient large inserted channels and available activated adsorption sites for zinc ions storage. These synergistic structural advantages obviously ameliorate the electrochemical performance of inert MnO. Therefore, even without any conductive agent additive, the as-prepared material shows high specific capacity, superb rate capability, prolonged cycling stability and attractive energy density, which are dramatically superior to those of the pristine MnO as well as many other host cathode materials. This work presents fresh insights on the role of defect engineering in the enhancement of the intrinsic electrochemical reactivity of inert cathode, and an effective strategy for scalable fabrication of high-performance cathode for zinc ion battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半透明发布了新的文献求助10
刚刚
奔赴时间尽头的流萤完成签到 ,获得积分10
1秒前
18746005898完成签到 ,获得积分10
2秒前
坚强的元瑶完成签到,获得积分10
2秒前
直率的宛海完成签到,获得积分10
2秒前
3秒前
3秒前
Jalynn2044完成签到 ,获得积分10
4秒前
ekdjk发布了新的文献求助10
5秒前
fan完成签到,获得积分10
6秒前
我和狂三贴贴完成签到,获得积分10
7秒前
Bin_Liu发布了新的文献求助10
9秒前
就叫柠檬吧应助橘如采纳,获得10
9秒前
9秒前
10秒前
11秒前
科研通AI5应助半透明采纳,获得10
11秒前
CodeCraft应助wangjie采纳,获得10
12秒前
JamesPei应助小医僧采纳,获得10
13秒前
lucky完成签到,获得积分10
13秒前
evelyn完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助MeSs采纳,获得10
14秒前
胡头虎脑完成签到 ,获得积分10
15秒前
潇湘完成签到 ,获得积分10
17秒前
20秒前
周周完成签到 ,获得积分10
20秒前
海鲜完成签到,获得积分10
20秒前
上官若男应助哈哈哈采纳,获得10
20秒前
空劳牵挂完成签到,获得积分10
21秒前
21秒前
hi派大星完成签到,获得积分10
21秒前
21秒前
夜曦完成签到 ,获得积分10
22秒前
tianmengkui完成签到,获得积分10
22秒前
俏皮金毛发布了新的文献求助30
22秒前
23秒前
冰魂应助零零采纳,获得10
24秒前
25秒前
ekdjk完成签到,获得积分10
25秒前
wangjie发布了新的文献求助10
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770