Generative AI Models for Drug Discovery

生成语法 计算机科学 药物发现 强化学习 人工智能 生成模型 瓶颈 生成设计 机器学习 计算生物学 生物信息学 工程类 生物 公制(单位) 运营管理 嵌入式系统
作者
Bowen Tang,John Ewalt,Ho Leung Ng
出处
期刊:Topics in medicinal chemistry 卷期号:: 221-243 被引量:7
标识
DOI:10.1007/7355_2021_124
摘要

A drug-like-molecule library can contain 1023–1060 molecules, among which only approximately 1012 molecules may be synthesized in labs. However, it is still challenging for researchers to find the most promising candidates among the vast number of synthesizable compounds in a reasonable time. Moreover, although molecules are picked for their predicted bioactivities, their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are often difficult to predict and modify. This is often a bottleneck for downstream studies and applications. It would be more productive if candidate molecules are generated, rather than screened from libraries, with suitable ADMET properties as prerequisites at the beginning of the molecule design process. Recently, artificial intelligence (AI)-based generative models have been described for designing drug candidates using prior biological and chemical knowledge. A spectacular example was the use of a combination of AI generative techniques and reinforcement learning by the biotechnology company, Insilico Medicine, to successfully create new DDR1 kinase inhibitors to treat fibrosis in only 21 days. We will describe how reinforcement learning (RL) algorithms can be applied to generative AI for better real-world effectiveness while better utilizing modern distributed hardware assets. In this chapter, we will review simple and advanced AI generative models and discuss the advantages and disadvantages of each model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
danna应助SRJ采纳,获得10
1秒前
小K完成签到 ,获得积分10
4秒前
桐桐应助默默幼南采纳,获得10
4秒前
4秒前
4秒前
5秒前
平常的刺猬完成签到 ,获得积分10
6秒前
fffff发布了新的文献求助20
6秒前
6秒前
韩凡发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
7秒前
随风而动123应助lxy采纳,获得10
8秒前
打打应助lxy采纳,获得10
8秒前
8秒前
独特靖巧发布了新的文献求助30
8秒前
冷眼观潮完成签到,获得积分10
9秒前
王小西发布了新的文献求助10
9秒前
9秒前
快哉快哉发布了新的文献求助10
12秒前
13秒前
felix发布了新的文献求助10
15秒前
斯文败类应助韩凡采纳,获得10
19秒前
jun_luo发布了新的文献求助10
19秒前
小马甲应助新火新茶采纳,获得10
19秒前
万能图书馆应助zzww采纳,获得10
21秒前
nk完成签到 ,获得积分10
23秒前
沉默小虾米完成签到 ,获得积分10
23秒前
白皮憨憨完成签到,获得积分10
25秒前
x1nger发布了新的文献求助10
25秒前
29秒前
遇上就这样吧应助Graham采纳,获得50
32秒前
32秒前
彩色的若颜完成签到,获得积分10
36秒前
ZONG发布了新的文献求助10
37秒前
37秒前
tianliyan完成签到 ,获得积分10
37秒前
Sam1357完成签到,获得积分10
37秒前
37秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839884
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521516
捐赠科研通 3101562
什么是DOI,文献DOI怎么找? 1708143
邀请新用户注册赠送积分活动 822228
科研通“疑难数据库(出版商)”最低求助积分说明 773208