DGCFNet: Dual Global Context Fusion Network for remote sensing image semantic segmentation

对偶(语法数字) 计算机科学 背景(考古学) 分割 人工智能 图像融合 图像(数学) 图像分割 融合 计算机视觉 地理 语言学 哲学 考古
作者
Yuan Liao,Tongchi Zhou,Lu Li,Jinming Li,Juntong Shen,Askar Hamdulla
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e2786-e2786
标识
DOI:10.7717/peerj-cs.2786
摘要

The semantic segmentation task of remote sensing images often faces various challenges such as complex backgrounds, high inter-class similarity, and significant differences in intra-class visual attributes. Therefore, segmentation models need to capture both rich local information and long-distance contextual information to overcome these challenges. Although convolutional neural networks (CNNs) have strong capabilities in extracting local information, they are limited in establishing long-range dependencies due to the inherent limitations of convolution. While Transformer can extract long-range contextual information through multi-head self attention mechanism, which has significant advantages in capturing global feature dependencies. To achieve high-precision semantic segmentation of remote sensing images, this article proposes a novel remote sensing image semantic segmentation network, named the Dual Global Context Fusion Network (DGCFNet), which is based on an encoder-decoder structure and integrates the advantages of CNN in capturing local information and Transformer in establishing remote contextual information. Specifically, to further enhance the ability of Transformer in modeling global context, a dual-branch global extraction module is proposed, in which the global compensation branch can not only supplement global information but also preserve local information. In addition, to increase the attention to salient regions, a cross-level information interaction module is adopted to enhance the correlation between features at different levels. Finally, to optimize the continuity and consistency of segmentation results, a feature interaction guided module is used to adaptively fuse information from intra layer and inter layer. Extensive experiments on the Vaihingen, Potsdam, and BLU datasets have shown that the proposed DGCFNet method can achieve better segmentation performance, with mIoU reaching 82.20%, 83.84% and 68.87%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助时尚飞阳采纳,获得30
刚刚
香蕉觅云应助hhh采纳,获得10
3秒前
4秒前
韩邹光完成签到,获得积分10
5秒前
bkagyin应助旭日采纳,获得10
5秒前
7秒前
洁净百川完成签到 ,获得积分10
7秒前
传奇3应助调皮的曼雁采纳,获得10
7秒前
9秒前
懵懂的采梦应助金刚大王采纳,获得10
10秒前
10秒前
体贴的叛逆者完成签到,获得积分10
11秒前
萨卡斯发布了新的文献求助10
12秒前
Xiongyu发布了新的文献求助30
12秒前
13秒前
欣慰阑悦发布了新的文献求助20
13秒前
shezhinicheng完成签到 ,获得积分10
14秒前
英俊的铭应助Singularity采纳,获得10
14秒前
东日发布了新的文献求助10
14秒前
冷静的白桃完成签到,获得积分20
15秒前
hhyy发布了新的文献求助10
15秒前
15秒前
挽倾颜完成签到,获得积分10
17秒前
17秒前
wys完成签到 ,获得积分10
17秒前
隐形曼青应助书文混四方采纳,获得10
17秒前
小蘑菇应助妮妮采纳,获得10
17秒前
18秒前
年轻的树叶完成签到,获得积分10
18秒前
爱学习的猫完成签到,获得积分10
19秒前
二世小卒完成签到 ,获得积分10
19秒前
立军发布了新的文献求助100
19秒前
思源应助东日采纳,获得10
21秒前
赘婿应助sdl采纳,获得10
21秒前
共享精神应助孝顺的灵萱采纳,获得10
22秒前
22秒前
小胡同学发布了新的文献求助10
22秒前
wuwanchun发布了新的文献求助10
23秒前
熊泰山完成签到 ,获得积分0
24秒前
lipel完成签到,获得积分10
24秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Risks and Security of Internet and Systems CRiSIS 2024 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828033
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462767
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700299
邀请新用户注册赠送积分活动 817812
科研通“疑难数据库(出版商)”最低求助积分说明 770442