Integrated Serum Pharmacochemistry and Network Pharmacology Used to Explore Potential Antidepressant Mechanisms of the Kaixin San

化学 抗抑郁药 药理学 色谱法 精神科 心理学 医学 焦虑
作者
Guoliang Dai,Deming Liu,Youjin Wang,Yanjun Wang,Qian Huang,Wenqing San,Xiaoyong Wang,Wenzheng Ju
出处
期刊:Biomedical Chromatography [Wiley]
卷期号:39 (4): e70041-e70041 被引量:1
标识
DOI:10.1002/bmc.70041
摘要

ABSTRACT Kaixin San (KXS) is a classical prescription for the treatment of depression. However, the mechanism is not clear. In this study, serum pharmacochemistry, mediated by the UHPLC‐Orbitrap Exploris 480 mass spectrometer, was used to identify compounds derived from the KXS‐medicated serum. These components were used to construct a compound‐target network for depression using a network pharmacology approach to predict potential biological targets of KXS. Subsequently, we established a mouse model of CUMS‐induced depression and observed the antidepressant effect of KXS. The signalling pathways predicted by the network pharmacology were further validated in animal experiments. The results showed that 36 compounds were identified from the KXS‐medicated serum. Based on this, 984 genes related to the compounds and 4966 genes related to depression were identified using network pharmacology. Critically, KEGG analysis identified the PI3K/Akt and NF‐κB signalling pathways as the main pathways through which KXS exerts its antidepressant effect. KXS significantly alleviated depression‐like behaviour and hippocampal histopathological changes in a mouse model of depression. Compared with the model group, the treatment of KXS significantly reduced the expression of protein targets in the PI3K/Akt/NF‐κB signalling pathway. All these studies effectively corroborated the predicted results, confirming the feasibility of this integrated strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
科研通AI6.1应助QQ采纳,获得10
5秒前
xyy应助Bin_Liu采纳,获得10
5秒前
fuchao发布了新的文献求助10
5秒前
7秒前
7秒前
Ikkyu发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
小小康康发布了新的文献求助10
10秒前
大个应助Asumita采纳,获得30
11秒前
luckypig完成签到,获得积分20
11秒前
12秒前
科目三应助玩命的紫南采纳,获得10
13秒前
菜狗发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
xingyecao发布了新的文献求助10
14秒前
轻松夏之完成签到,获得积分10
15秒前
16秒前
16秒前
思源应助浮浮世世采纳,获得100
16秒前
小小康康完成签到,获得积分10
17秒前
彭于晏应助明天会更美好采纳,获得10
17秒前
17秒前
18秒前
白云四季发布了新的文献求助10
18秒前
18秒前
淡淡新竹发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
22秒前
22秒前
杨德帅发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696