Integrated Serum Pharmacochemistry and Network Pharmacology Used to Explore Potential Antidepressant Mechanisms of the Kaixin San

化学 抗抑郁药 药理学 色谱法 精神科 心理学 医学 焦虑
作者
Guoliang Dai,Deming Liu,Youjin Wang,Yanjun Wang,Qian Huang,Wenqing San,Xiaoyong Wang,Wenzheng Ju
出处
期刊:Biomedical Chromatography [Wiley]
卷期号:39 (4): e70041-e70041
标识
DOI:10.1002/bmc.70041
摘要

ABSTRACT Kaixin San (KXS) is a classical prescription for the treatment of depression. However, the mechanism is not clear. In this study, serum pharmacochemistry, mediated by the UHPLC‐Orbitrap Exploris 480 mass spectrometer, was used to identify compounds derived from the KXS‐medicated serum. These components were used to construct a compound‐target network for depression using a network pharmacology approach to predict potential biological targets of KXS. Subsequently, we established a mouse model of CUMS‐induced depression and observed the antidepressant effect of KXS. The signalling pathways predicted by the network pharmacology were further validated in animal experiments. The results showed that 36 compounds were identified from the KXS‐medicated serum. Based on this, 984 genes related to the compounds and 4966 genes related to depression were identified using network pharmacology. Critically, KEGG analysis identified the PI3K/Akt and NF‐κB signalling pathways as the main pathways through which KXS exerts its antidepressant effect. KXS significantly alleviated depression‐like behaviour and hippocampal histopathological changes in a mouse model of depression. Compared with the model group, the treatment of KXS significantly reduced the expression of protein targets in the PI3K/Akt/NF‐κB signalling pathway. All these studies effectively corroborated the predicted results, confirming the feasibility of this integrated strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三十丶发布了新的文献求助10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
郭科研完成签到,获得积分10
1秒前
轻松发布了新的文献求助30
2秒前
心灵美的香旋完成签到,获得积分10
2秒前
积极寻梅发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
zhang完成签到,获得积分10
3秒前
发仔完成签到,获得积分10
3秒前
天水小斑马完成签到 ,获得积分10
3秒前
映泧完成签到,获得积分10
3秒前
4秒前
共享精神应助吴彦祖采纳,获得10
5秒前
儒雅鹤轩发布了新的文献求助10
6秒前
香蕉觅云应助初空月儿采纳,获得10
6秒前
7秒前
在水一方应助徐玉采纳,获得10
7秒前
ZhouZhou发布了新的文献求助10
7秒前
阳光新筠完成签到,获得积分10
8秒前
dynamoo应助binjason_zhang采纳,获得10
8秒前
小青椒应助Gesj采纳,获得30
8秒前
8秒前
9秒前
传奇3应助LinHan采纳,获得10
9秒前
坦率灵槐发布了新的文献求助10
10秒前
吴彦祖应助文件撤销了驳回
10秒前
IFYK完成签到 ,获得积分10
11秒前
糖葫芦完成签到,获得积分20
11秒前
12秒前
轻松完成签到,获得积分10
13秒前
13秒前
浮游应助Snow采纳,获得10
13秒前
张朝程发布了新的文献求助10
15秒前
野性的初曼完成签到,获得积分10
15秒前
15秒前
zmy完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461250
求助须知:如何正确求助?哪些是违规求助? 4566246
关于积分的说明 14304179
捐赠科研通 4491964
什么是DOI,文献DOI怎么找? 2460605
邀请新用户注册赠送积分活动 1449891
关于科研通互助平台的介绍 1425587