Deep learning on pre-procedural computed tomography and clinical data predicts outcome following stroke thrombectomy

医学 逻辑回归 判别式 人工智能 深度学习 队列 冲程(发动机) 机器学习 放射科 内科学 计算机科学 机械工程 工程类
作者
James P. Diprose,William K. Diprose,Tuan-Yow Chien,Michael T.M. Wang,Andrew McFetridge,Gregory P. Tarr,Kaustubha Ghate,James Beharry,JaeBeom Hong,Teddy Y. Wu,Doug Campbell,P. Alan Barber
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:17 (3): 266-271 被引量:5
标识
DOI:10.1136/jnis-2023-021154
摘要

Background Deep learning using clinical and imaging data may improve pre-treatment prognostication in ischemic stroke patients undergoing endovascular thrombectomy (EVT). Methods Deep learning models were trained and tested on baseline clinical and imaging (CT head and CT angiography) data to predict 3-month functional outcomes in stroke patients who underwent EVT. Classical machine learning models (logistic regression and random forest classifiers) were constructed to compare their performance with the deep learning models. An external validation dataset was used to validate the models. The MR PREDICTS prognostic tool was tested on the external validation set, and its performance was compared with the deep learning and classical machine learning models. Results A total of 975 patients (550 men; mean±SD age 67.5±15.1 years) were studied with 778 patients in the model development cohort and 197 in the external validation cohort. The deep learning model trained on baseline CT and clinical data, and the logistic regression model (clinical data alone) demonstrated the strongest discriminative abilities for 3-month functional outcome and were comparable (AUC 0.811 vs 0.817, Q=0.82). Both models exhibited superior prognostic performance than the other deep learning (CT head alone, CT head, and CT angiography) and MR PREDICTS models (all Q<0.05). Conclusions The discriminative performance of deep learning for predicting functional independence was comparable to logistic regression. Future studies should focus on whether incorporating procedural and post-procedural data significantly improves model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
una完成签到 ,获得积分10
6秒前
taozhiqi完成签到,获得积分10
7秒前
7秒前
无奈安双发布了新的文献求助10
9秒前
taozhiqi发布了新的文献求助20
11秒前
领导范儿应助虞头星星采纳,获得10
15秒前
予光完成签到,获得积分10
15秒前
明理的凡霜完成签到,获得积分10
20秒前
24秒前
24秒前
科目三应助lqnb668采纳,获得10
25秒前
songnvshi发布了新的文献求助10
27秒前
28秒前
LSY完成签到 ,获得积分10
28秒前
lqnb668完成签到,获得积分10
29秒前
xcz发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
恍若隔世完成签到,获得积分20
34秒前
无奈安双完成签到,获得积分10
36秒前
闻巷雨完成签到 ,获得积分10
36秒前
yuki发布了新的文献求助10
36秒前
兜兜发布了新的文献求助10
36秒前
37秒前
37秒前
闫辰龙发布了新的文献求助10
38秒前
田様应助llll采纳,获得10
40秒前
lqnb668发布了新的文献求助10
41秒前
42秒前
小马甲应助liweisdau采纳,获得10
44秒前
45秒前
充电宝应助白鲸采纳,获得10
45秒前
希望天下0贩的0应助howl采纳,获得10
47秒前
李爱国应助vvvvvv采纳,获得10
48秒前
秣旎完成签到,获得积分10
49秒前
TK发布了新的文献求助10
49秒前
shouyu29应助土土采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868072
求助须知:如何正确求助?哪些是违规求助? 6437884
关于积分的说明 15657694
捐赠科研通 4983390
什么是DOI,文献DOI怎么找? 2687484
邀请新用户注册赠送积分活动 1630166
关于科研通互助平台的介绍 1588201