Overcoming resistance to anti-PD-L1 immunotherapy: mechanisms, combination strategies, and future directions

生物 免疫疗法 计算生物学 抗性(生态学) 免疫学 免疫系统 生态学
作者
Kartik Mandal,Ganesh Kumar Barik,Manas Kumar Santra
出处
期刊:Molecular Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12943-025-02400-z
摘要

Cancer cells express high levels of programmed cell death-ligand 1 (PD-L1) to evade immune surveillance. PD-L1 interacts with PD-1 on T cells to make them non-functional. Thus, PD-L1 and PD-1 are pivotal targets in cancer immunotherapy. While anti-PD-1/PD-L1 therapies have offered renewed hope for many patients, their modest efficacy remains a critical concern. This underscores the urgent need to unravel the intricate mechanisms that govern both therapeutic responses as well as resistance to immunotherapy. This review explores the multifaceted nature of PD-L1, including factors that regulate its expression, tumor-immune interactions, and the resistance mechanisms associated with anti-PD-L1 immunotherapy. Several promising strategies have been explored to overcome these challenges, such as combination therapies, modulation of the tumor microenvironment, neoantigen targeting, and dynamic biomarker monitoring. Outcomes of these approaches, integrating advanced technologies like high-resolution imaging, machine learning, multi-omics profiling, and liquid biopsy for soluble PD-L1 detection emerge as a powerful means to refine patient stratification. Together, these innovations pave the way toward more precise and personalized immunotherapy, maximizing clinical benefits for cancer patients. Additionally, the evolving landscape of clinical trials involving anti-PD-1/PD-L1 monoclonal antibodies has been explored, emphasizing the integration of immune checkpoint therapies with chemotherapy, radiotherapy, targeted therapy, CAR-T, and metabolic immunotherapy to overcome resistance in refractory cancers. By embarking on these challenges and leveraging novel therapeutic strategies, this review intends to advance the understanding of more effective, personalized cancer immunotherapies, ultimately improving outcomes for a broader range of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
1秒前
科研通AI2S应助落后秋双采纳,获得10
1秒前
1秒前
1秒前
小周发布了新的文献求助10
2秒前
feilei完成签到,获得积分10
2秒前
科研通AI6应助淡墨采纳,获得10
2秒前
3秒前
芑璇完成签到,获得积分10
3秒前
Wjh123456完成签到,获得积分10
4秒前
fzhou完成签到 ,获得积分10
4秒前
cst完成签到,获得积分10
4秒前
电磁鳄完成签到,获得积分10
4秒前
111完成签到,获得积分20
5秒前
5秒前
执着烧鹅完成签到,获得积分10
5秒前
漂亮夏兰完成签到 ,获得积分10
5秒前
千早爱音完成签到,获得积分10
5秒前
houlingwei发布了新的文献求助10
5秒前
寒冷尔蝶完成签到,获得积分10
6秒前
善学以致用应助tyhmugua采纳,获得10
6秒前
Neltharion完成签到,获得积分10
6秒前
wllom完成签到,获得积分20
6秒前
小尘埃完成签到,获得积分10
6秒前
7秒前
单纯乞完成签到,获得积分10
7秒前
7秒前
滴答滴答发布了新的文献求助10
8秒前
浮游应助蛋子s采纳,获得10
8秒前
凡而不庸完成签到,获得积分10
9秒前
LHNini发布了新的文献求助10
9秒前
海鲜完成签到,获得积分10
9秒前
解语花发布了新的文献求助30
9秒前
forge完成签到,获得积分10
10秒前
挽风风风风完成签到,获得积分10
11秒前
wllom发布了新的文献求助10
11秒前
carrie发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助huntme采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080063
求助须知:如何正确求助?哪些是违规求助? 4298076
关于积分的说明 13390059
捐赠科研通 4121584
什么是DOI,文献DOI怎么找? 2257188
邀请新用户注册赠送积分活动 1261474
关于科研通互助平台的介绍 1195636