Development and validation of prediction model for pre‐eclampsia‐related maternal adverse outcome: retrospective cohort study

逻辑回归 医学 列线图 回顾性队列研究 子痫 比例危险模型 多元统计 不利影响 单变量 接收机工作特性 产科 怀孕 内科学 统计 遗传学 生物 数学
作者
Min Huang,Wenjie Xie,Lili Kang,Dan Luo,Qiao He,Xiaoling Yang
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
标识
DOI:10.1002/uog.70001
摘要

ABSTRACT Objectives Pre‐eclampsia (PE) is a major contributor to maternal morbidity and mortality. This study aimed to identify clinical risk factors for maternal adverse outcome in women with PE, and to assess the time to event using predictive modeling. Methods This retrospective cohort study included women with a singleton pregnancy diagnosed with PE who received antenatal care between January 2019 and December 2023 at one of three hospitals in China. Participants were assigned randomly into a training set and a validation set in a 7:3 ratio. Clinical characteristics and laboratory parameters collected at the time of PE diagnosis were analyzed to identify risk factors for maternal adverse outcome using univariate and multivariate logistic regression. Cox regression analysis was employed to examine factors associated with time to maternal adverse outcome. Two predictive nomogram models were developed: Model 1, which was based on multivariate logistic regression and predicts the absolute risk of maternal adverse outcome; and Model 2, which was derived from Cox regression coefficients and estimates the likelihood of maternal event‐free survival at 3, 5 and 7 days after PE diagnosis. Model performance was assessed using the area under the receiver‐operating‐characteristics curve (AUC), calibration curves and decision‐curve analysis. Results A total of 1520 women diagnosed with PE were screened, of whom 1400 were included based on predefined inclusion and exclusion criteria; 979 were assigned to the training set and 421 to the validation set. Multivariate logistic regression identified the following variables as significant independent risk factors for maternal adverse outcome: maternal age ≥ 35 years, prepregnancy body mass index (underweight, overweight or obese), irregular antenatal care, earlier gestational age at presentation, visual disturbance, mean arterial pressure ≥ 120 mmHg, elevated 24‐h urine protein, elevated soluble fms‐like tyrosine kinase‐1 to placental growth factor ratio, low hemoglobin, elevated aspartate aminotransferase, total bilirubin > 15.9 μmol/L and serum urea > 7.5 mmol/L. Cox regression confirmed that these factors were associated significantly with time to maternal adverse outcome, with the exception of elevated total bilirubin and serum urea. Model 1 demonstrated excellent predictive performance, with an AUC of 0.93 (95% CI, 0.92–0.95) in the training set and 0.92 (95% CI, 0.89–0.95) in the validation set. Model 2 achieved AUC values of 0.81 (95% CI, 0.75–0.87), 0.86 (95% CI, 0.82–0.89) and 0.89 (95% CI, 0.87–0.92) in the training set and 0.79 (95% CI, 0.70–0.88), 0.82 (95% CI, 0.75–0.89) and 0.88 (95% CI, 0.84–0.92) in the validation set for predicting maternal adverse outcome at 3, 5 and 7 days after PE diagnosis, respectively. For each model, calibration curves showed strong agreement between predicted and observed probabilities, while decision‐curve analysis confirmed the clinical utility of both models. Conclusions This study identified key clinical predictors of maternal adverse outcome in women with PE and developed two nomogram models for risk stratification. The validated predictive models offer reliable tools for the early identification of high‐risk patients, facilitating timely clinical intervention to improve maternal outcome. © 2025 International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乙猪完成签到 ,获得积分0
刚刚
现实的曼安完成签到 ,获得积分10
1秒前
小果完成签到 ,获得积分10
1秒前
调皮平蓝完成签到,获得积分10
3秒前
隐形的非笑完成签到 ,获得积分10
3秒前
上进完成签到 ,获得积分10
5秒前
6秒前
温如军完成签到 ,获得积分10
6秒前
黑眼圈完成签到 ,获得积分10
7秒前
猪鼓励完成签到,获得积分10
7秒前
薏仁完成签到 ,获得积分10
8秒前
mrconli完成签到,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Aluhaer应助科研通管家采纳,获得100
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
落寞的幻竹完成签到,获得积分10
11秒前
ldr888完成签到,获得积分10
12秒前
12秒前
尘远知山静完成签到 ,获得积分10
14秒前
活力雁枫完成签到,获得积分10
15秒前
木雨亦潇潇完成签到,获得积分10
17秒前
zhangsan完成签到,获得积分10
25秒前
CodeCraft应助hanxiaodong采纳,获得10
28秒前
Yynnn完成签到 ,获得积分10
30秒前
37秒前
menghongmei完成签到 ,获得积分10
39秒前
zhang完成签到 ,获得积分10
39秒前
haochi完成签到,获得积分10
40秒前
orixero应助不是小苦瓜采纳,获得10
41秒前
hanxiaodong发布了新的文献求助10
43秒前
haprier完成签到 ,获得积分10
45秒前
忧郁如柏完成签到,获得积分10
45秒前
甜美坤完成签到 ,获得积分10
50秒前
Jason完成签到 ,获得积分10
52秒前
hanxiaodong完成签到,获得积分10
56秒前
虔三愿完成签到,获得积分10
1分钟前
靳欣妍完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188146
求助须知:如何正确求助?哪些是违规求助? 4372545
关于积分的说明 13613593
捐赠科研通 4225769
什么是DOI,文献DOI怎么找? 2317932
邀请新用户注册赠送积分活动 1316498
关于科研通互助平台的介绍 1266170