Automated diagnosis and management of follicular thyroid nodules based on the devised small-dataset interpretable foreground optimization network deep learning: a multicenter diagnostic study

医学 接收机工作特性 甲状腺结节 队列 深度学习 人工智能 结核(地质) 放射科 曲线下面积 内科学 甲状腺 计算机科学 古生物学 药代动力学 生物
作者
Zheyu Yang,Siqiong Yao,Yu Heng,Pengcheng Shen,Tian Lv,Siqi Feng,Lei Tao,Weituo Zhang,Weihua Qiu,Hui Lü,Wei Cai
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:6
标识
DOI:10.1097/js9.0000000000000506
摘要

Currently, follicular thyroid carcinoma (FTC) has a relatively low incidence with a lack of effective preoperative diagnostic means. To reduce the need for invasive diagnostic procedures and to address information deficiencies inherent in a small dataset, we utilized interpretable foreground optimization network deep learning to develop a reliable preoperative FTC detection system.In this study, a deep learning model (FThyNet) was established using preoperative ultrasound images. Data on patients in the training and internal validation cohort ( n =432) were obtained from Ruijin Hospital, China. Data on patients in the external validation cohort ( n =71) were obtained from four other clinical centers. We evaluated the predictive performance of FThyNet and its ability to generalize across multiple external centers and compared the results yielded with assessments from physicians directly predicting FTC outcomes. In addition, the influence of texture information around the nodule edge on the prediction results was evaluated.FThyNet had a consistently high accuracy in predicting FTC with an area under the receiver operating characteristic curve (AUC) of 89.0% [95% CI 87.0-90.9]. Particularly, the AUC for grossly invasive FTC reached 90.3%, which was significantly higher than that of the radiologists (56.1% [95% CI 51.8-60.3]). The parametric visualization study found that those nodules with blurred edges and relatively distorted surrounding textures were more likely to have FTC. Furthermore, edge texture information played an important role in FTC prediction with an AUC of 68.3% [95% CI 61.5-75.5], and highly invasive malignancies had the highest texture complexity.FThyNet could effectively predict FTC, provide explanations consistent with pathological knowledge, and improve clinical understanding of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助Charlotte采纳,获得10
2秒前
嘻嘻完成签到,获得积分10
4秒前
5秒前
Owen应助zhangsudi采纳,获得10
6秒前
宫城百事顺完成签到,获得积分10
6秒前
品品完成签到 ,获得积分10
7秒前
高源发布了新的文献求助10
10秒前
想吃糖葫芦完成签到 ,获得积分10
11秒前
领导范儿应助小璐璐呀采纳,获得10
12秒前
14秒前
我是老大应助Youtenter采纳,获得10
14秒前
zhangsudi发布了新的文献求助10
19秒前
Hello应助misong采纳,获得10
21秒前
星辰大海应助Ab采纳,获得10
22秒前
搜集达人应助自然黄豆采纳,获得10
23秒前
23秒前
gao_yiyi应助Raine采纳,获得30
24秒前
冰魂应助奋斗藏花采纳,获得10
25秒前
张菁完成签到,获得积分10
26秒前
26秒前
羊羊发布了新的文献求助10
26秒前
认真搞科研啦完成签到,获得积分10
26秒前
科研通AI5应助Hung采纳,获得10
27秒前
jsdiohfsiodhg发布了新的文献求助10
30秒前
30秒前
小璐璐呀发布了新的文献求助10
31秒前
31秒前
32秒前
丘比特应助矮小的聪展采纳,获得10
32秒前
Ab发布了新的文献求助10
37秒前
jfz发布了新的文献求助10
37秒前
Youtenter发布了新的文献求助10
38秒前
羊羊完成签到,获得积分10
39秒前
echo完成签到 ,获得积分10
39秒前
为念完成签到,获得积分20
41秒前
奋斗的蜗牛应助misong采纳,获得10
43秒前
冰魂应助骑驴找马采纳,获得10
46秒前
思源应助兴奋的万声采纳,获得10
46秒前
49秒前
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844