Unifying Large Language Models and Knowledge Graphs: A Roadmap

知识图 计算机科学 人工智能 数据科学 理论计算机科学 自然语言处理
作者
Shirui Pan,Linhao Luo,Yufei Wang,Chen Chen,Jiapu Wang,Xindong Wu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3580-3599 被引量:273
标识
DOI:10.1109/tkde.2024.3352100
摘要

Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolve by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs , in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seanagi完成签到,获得积分10
1秒前
2秒前
3秒前
5秒前
雪落发布了新的文献求助10
7秒前
kjwu发布了新的文献求助10
9秒前
10秒前
wayne完成签到 ,获得积分10
11秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
MartinaLZ应助科研通管家采纳,获得50
14秒前
轻松小张应助科研通管家采纳,获得10
14秒前
14秒前
卷一卷发布了新的文献求助10
16秒前
哟哟哟完成签到,获得积分10
18秒前
21秒前
zhw发布了新的文献求助10
22秒前
23秒前
yuaaaann发布了新的文献求助10
25秒前
rui完成签到,获得积分10
27秒前
28秒前
吴图图发布了新的文献求助10
28秒前
28秒前
29秒前
独特的傲薇完成签到,获得积分10
30秒前
cmwang发布了新的文献求助10
34秒前
34秒前
38秒前
39秒前
团团团完成签到 ,获得积分0
39秒前
赘婿应助SCIfafafafa采纳,获得10
40秒前
科研通AI5应助yuaaaann采纳,获得10
40秒前
wangli发布了新的文献求助10
42秒前
拓跋从阳发布了新的文献求助10
43秒前
勤恳的宛菡完成签到,获得积分10
47秒前
嘿猪聪明完成签到,获得积分10
49秒前
50秒前
bkagyin应助安白采纳,获得10
52秒前
啊啊完成签到,获得积分10
54秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040880
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649