化学
电催化剂
催化作用
背景(考古学)
无机化学
电化学
电极
物理化学
有机化学
生物
古生物学
作者
Nikhil N. Rao,Chandraraj Alex,Moumita Mukherjee,Subir Roy,Akhil Tayal,Ayan Datta,Neena S. John
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2024-01-05
卷期号:14 (2): 981-993
被引量:13
标识
DOI:10.1021/acscatal.3c04967
摘要
Stabilization of active NiOOH species for achieving exclusive operation of the direct mechanism of the urea electro-oxidation reaction (UOR) presents a formidable challenge. Despite the extensive repertoire of UOR electrocatalysts developed so far, the sustenance of active NiOOH species throughout the reaction remains unaccomplished due to the predominant operation of the indirect mechanism that involves the reduction of NiOOH into Ni(OH)2 during electrocatalysis. The capability of a UOR electrocatalyst to retain the active species is of paramount importance as it ensures the optimal engagement of the maximum pool of active Ni centers in the electrocatalytic process, resulting in enhanced activity with reduced Ni mass loading. In this context, the present study unveils the electrocatalytic UOR capability of a rare-earth nickelate, NdNiO3, showcasing high UOR activity with a reduced burden of Ni mass loading. From the detailed cyclic voltammetry studies, in situ X-ray absorption spectroscopy, and impedance analyses, it has been substantiated that NdNiO3 triggers the UOR to proceed through the unconventional direct mechanism, obviating the need for catalyst regeneration during UOR. The adsorption free energy calculation of reactants such as urea, OH– ions, and product CO2 reveals that NdNiO3 effectively interacts with the reactants, and its surface is highly tolerant toward COx poison when compared to NiO. The preferential direct mechanism of UOR, enhanced mass activity, and commendable resistance against COx poisons emanate from the more facile formation and effective stabilization of active NiOOH species on NdNiO3.
科研通智能强力驱动
Strongly Powered by AbleSci AI