人工智能
分割
计算机科学
背景(考古学)
模式识别(心理学)
特征(语言学)
图像分割
代表(政治)
约束(计算机辅助设计)
去相关
相似性(几何)
对象(语法)
尺度空间分割
掷骰子
计算机视觉
边界(拓扑)
医学影像学
样品(材料)
图像(数学)
数学
古生物学
哲学
数学分析
几何学
化学
政治
法学
生物
色谱法
语言学
政治学
作者
Yifan Gao,Jun Li,Xinyue Chang,Yulong Zhang,Riqing Chen,Changcai Yang,Yi Wei,Heng Dong,Lifang Wei
标识
DOI:10.1109/bibm58861.2023.10385820
摘要
Multi-objective segmentation (MOS) in medical images is to simultaneously extract multiple regions of interest in the medical images. Due to the unbalanced distribution of samples and the similarity and significant differences between features in medical images, current methods still struggle to achieve satisfactory results. In this context, we propose a novel Morphological Guided Causal Constrain segmentation network (MCCSeg) for medical image multi-object segmentation. We introduced a Causal Constrain Module (CCM) for feature decorrelation by sample reweighting. The morphological guidance module (MG) is designed to extract the boundary features as the prior shape information for enhancing feature representation. Our experiments demonstrate that MCCSeg outperforms other state-of-the-art methods, obtaining up 3.76% and 5.41% improvements in DICE and HD95 scores on Synapse dataset, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI