Programmed cell death-index (PCDi) as a prognostic biomarker and predictor of drug sensitivity in cervical cancer: a machine learning-based analysis of mRNA signatures

医学 宫颈癌 肿瘤科 生物标志物 列线图 内科学 多西紫杉醇 癌症 顺铂 紫杉醇 化疗 生物 生物化学
作者
Wei Wang,Pengchen Chen,Songhua Yuan
出处
期刊:Journal of Cancer [Ivyspring International Publisher]
卷期号:15 (5): 1378-1396
标识
DOI:10.7150/jca.91798
摘要

Purpose: Cervical cancer is a significant public health concern, particularly in developing countries. Despite available treatment strategies, the prognosis for patients with locally advanced cervical cancer and beyond remains poor. Therefore, an accurate prediction model that can reliably forecast prognosis is essential in clinical setting. Programmed cell death (PCD) mechanisms are diverse and play a critical role in tumor growth, survival, and metastasis, making PCD a potential reliable prognostic marker for cervical cancer. Methods: In this study, we created a novel prognostic indicator, programmed cell death-index (PCDi), based on a 10-fold cross-validation framework for comprehensive analysis of PCD-associated genes. Results: Our PCDi-based prognostic model outperformed previously published signature models, stratifying cervical cancer patients into two distinct groups with significant differences in overall survival prognosis, tumor immune features, and drug sensitivity. Higher PCDi scores were associated with poorer prognosis. The nomogram survival model integrated PCDi and clinical characteristics, demonstrating higher prognostic prediction performance. Furthermore, our study investigated the immune features of cervical cancer patients and found that those with high PCDi scores had lower infiltrating immune cells, lower potential of T cell dysfunction, and higher potential of T cell exclusion. Patients with high PCDi scores were resistant to classic chemotherapy regimens, including cisplatin, docetaxel, and paclitaxel, but showed sensitivity to the inhibitor SB505124 and Trametinib. Conclusion: Our findings suggest that PCD-related gene signature could serve as a useful biomarker to reliably predict prognosis and guide treatment decisions in cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助蓁蓁采纳,获得30
1秒前
pojian发布了新的文献求助10
3秒前
3秒前
尽快毕业完成签到 ,获得积分10
3秒前
ZY完成签到,获得积分20
5秒前
zo发布了新的文献求助10
6秒前
Owen应助稚于采纳,获得30
7秒前
爽o发布了新的文献求助10
8秒前
gingercat完成签到,获得积分10
9秒前
科研通AI5应助司空以蕊采纳,获得10
10秒前
11秒前
流飒完成签到,获得积分10
11秒前
11秒前
jyp111应助教育技术学采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助剩饭的狗采纳,获得10
16秒前
16秒前
ll完成签到,获得积分10
17秒前
17秒前
李莉莉发布了新的文献求助10
18秒前
19秒前
20秒前
Xiaoxiao应助世界末末日采纳,获得10
20秒前
21秒前
司空以蕊发布了新的文献求助10
22秒前
朱光辉发布了新的文献求助10
22秒前
wsgdhz发布了新的文献求助10
23秒前
彦希完成签到 ,获得积分10
23秒前
23秒前
24秒前
26秒前
雅光发布了新的文献求助50
26秒前
希望天下0贩的0应助Rjy采纳,获得10
26秒前
赘婿应助Fiona678采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787714
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261246
捐赠科研通 3049024
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801874
科研通“疑难数据库(出版商)”最低求助积分说明 760385