Randomizing Human Brain Function Representation for Brain Disease Diagnosis

计算机科学 脑图谱 人工智能 地图集(解剖学) 模式识别(心理学) 神经影像学 感兴趣区域 脑病 维数之咒 代表(政治) 机器学习 神经科学 疾病 心理学 医学 病理 政治 政治学 法学 解剖
作者
Mengjun Liu,Huifeng Zhang,Mianxin Liu,Dongdong Chen,Zixu Zhuang,Xin Wang,Lichi Zhang,Daihui Peng,Qian Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2537-2546 被引量:4
标识
DOI:10.1109/tmi.2024.3368064
摘要

Resting-state fMRI (rs-fMRI) is an effective tool for quantifying functional connectivity (FC), which plays a crucial role in exploring various brain diseases. Due to the high dimensionality of fMRI data, FC is typically computed based on the region of interest (ROI), whose parcellation relies on a pre-defined atlas. However, utilizing the brain atlas poses several challenges including (1) subjective selection bias in choosing from various brain atlases, (2) parcellation of each subject's brain with the same atlas yet disregarding individual specificity; (3) lack of interaction between brain region parcellation and downstream ROI-based FC analysis. To address these limitations, we propose a novel randomizing strategy for generating brain function representation to facilitate neural disease diagnosis. Specifically, we randomly sample brain patches, thus avoiding ROI parcellations of the brain atlas. Then, we introduce a new brain function representation framework for the sampled patches. Each patch has its function description by referring to anchor patches, as well as the position description. Furthermore, we design an adaptive-selection-assisted Transformer network to optimize and integrate the function representations of all sampled patches within each brain for neural disease diagnosis. To validate our framework, we conduct extensive evaluations on three datasets, and the experimental results establish the effectiveness and generality of our proposed method, offering a promising avenue for advancing neural disease diagnosis beyond the confines of traditional atlas-based methods. Our code is available at https://github.com/mjliu2020/RandomFR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gary完成签到,获得积分10
1秒前
小白完成签到,获得积分10
1秒前
林七七发布了新的文献求助30
3秒前
3秒前
XieQinxie完成签到,获得积分10
5秒前
五條小羊完成签到,获得积分10
6秒前
xixi发布了新的文献求助10
7秒前
joyce完成签到,获得积分10
7秒前
8秒前
mr关闭了mr文献求助
9秒前
xxiao完成签到 ,获得积分10
9秒前
11秒前
12秒前
聖璕完成签到,获得积分10
12秒前
一只肥牛完成签到 ,获得积分10
12秒前
李俊枫发布了新的文献求助10
13秒前
蔺不平完成签到,获得积分10
14秒前
xiaofu完成签到,获得积分10
17秒前
阿德萨达发布了新的文献求助10
17秒前
曾经曼梅完成签到,获得积分10
17秒前
18秒前
北北发布了新的文献求助30
23秒前
kingwhitewing完成签到,获得积分10
24秒前
Ava应助meizi采纳,获得10
24秒前
泽锦臻完成签到 ,获得积分10
24秒前
YoHo完成签到 ,获得积分10
25秒前
孙天成发布了新的文献求助30
26秒前
深情安青应助探子安采纳,获得10
27秒前
许容完成签到,获得积分10
28秒前
33秒前
唠叨的胡萝卜完成签到,获得积分10
34秒前
北北发布了新的文献求助10
35秒前
meizi发布了新的文献求助10
36秒前
林七七完成签到,获得积分10
38秒前
清云应助七七七采纳,获得10
38秒前
包容的花卷完成签到,获得积分10
39秒前
现代CC完成签到 ,获得积分10
40秒前
42秒前
南宫誉完成签到,获得积分10
43秒前
53秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844708
求助须知:如何正确求助?哪些是违规求助? 3387106
关于积分的说明 10547614
捐赠科研通 3107733
什么是DOI,文献DOI怎么找? 1711988
邀请新用户注册赠送积分活动 824242
科研通“疑难数据库(出版商)”最低求助积分说明 774644