Construction and analysis of a joint diagnostic model of machine learning for cryptorchidism based on single‐cell sequencing

小桶 基因 计算机科学 计算生物学 人工神经网络 生物信息学 生物 机器学习 基因本体论 基因表达 遗传学
作者
Yuehua Chen,Xiaomeng Zhou,Linghua Ji,Jun Zhao,Hua Xian,Yunzhao Xu,Ziheng Wang,Wenliang Ge
出处
期刊:Teratology [Wiley]
卷期号:116 (3) 被引量:2
标识
DOI:10.1002/bdr2.2316
摘要

Abstract Background Cryptorchidism is a condition in which one or both of a baby's testicles do not fully descend into the bottom of the scrotum. Newborns with cryptorchidism are at increased risk of developing infertility later in life. The aim of this study was to develop a novel diagnostic model for cryptorchidism and to identify new biomarkers associated with cryptorchidism. Methods The study data were obtained from RNA sequencing data of cryptorchid patients from Nantong University Hospital and the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to obtain differentially expressed genes (DEGs) between the control and cryptorchid groups. These DEGs were analyzed for their functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using GSEA software. Random Forest algorithm was used to screen central genes based on these DEGs. Neuralnet software package was used to develop artificial neural network models. Based on clinical data, receiver operating characteristic (ROC) was used to validate the models. Single‐cell sequencing analysis was used for the pathogenesis of cryptorchidism. Results We obtained a total of 525 important DEGs related to cryptorchidism, which are mainly associated with biological functions such as supramolecular complexes and microtubule cytoskeleton. Random forest approach screening obtained eight hub genes. A neural network based on the hub genes showed a 100% success rate of the model. Finally, single‐cell sequencing analysis validated the hub genes. Conclusion We developed a novel diagnostic model for cryptorchidism using artificial neural networks and validated its utility as an effective diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
1秒前
上杉绘梨衣完成签到,获得积分10
1秒前
1秒前
韩梓恒完成签到,获得积分10
1秒前
1秒前
Rosaline完成签到 ,获得积分10
1秒前
qingfeng完成签到,获得积分10
2秒前
yxy发布了新的文献求助10
2秒前
共渡完成签到,获得积分10
2秒前
Eternity完成签到,获得积分10
2秒前
yyy完成签到,获得积分10
2秒前
顺利毕业完成签到,获得积分10
2秒前
hahahalha完成签到,获得积分10
3秒前
开始游戏55完成签到,获得积分10
3秒前
下雨的颜色完成签到,获得积分10
3秒前
3秒前
加油加油完成签到,获得积分10
4秒前
聪明盼山完成签到,获得积分10
4秒前
Oyster7发布了新的文献求助10
4秒前
明理小凝完成签到 ,获得积分10
5秒前
iwooto完成签到,获得积分10
5秒前
5秒前
刘超D完成签到,获得积分10
6秒前
6秒前
7秒前
ljljljlj完成签到,获得积分10
7秒前
嘟嘟发布了新的文献求助10
7秒前
jimmy完成签到,获得积分10
7秒前
7秒前
chenhunhun完成签到,获得积分10
8秒前
宇与鱼发布了新的文献求助10
8秒前
开心的雁芙完成签到,获得积分10
9秒前
阿茗发布了新的文献求助20
9秒前
甜美的夏之完成签到,获得积分10
10秒前
malaodi发布了新的文献求助10
11秒前
Ranger_M发布了新的文献求助10
11秒前
xh发布了新的文献求助10
11秒前
Oyster7完成签到,获得积分10
12秒前
论文多多完成签到,获得积分10
12秒前
善学以致用应助陈林的爹采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609