已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction and analysis of a joint diagnostic model of machine learning for cryptorchidism based on single‐cell sequencing

小桶 基因 计算机科学 计算生物学 人工神经网络 生物信息学 生物 机器学习 基因本体论 基因表达 遗传学
作者
Yuehua Chen,Xiaomeng Zhou,Linghua Ji,Jun Zhao,Hua Xian,Yunzhao Xu,Ziheng Wang,Wenliang Ge
出处
期刊:Teratology [Wiley]
卷期号:116 (3) 被引量:2
标识
DOI:10.1002/bdr2.2316
摘要

Abstract Background Cryptorchidism is a condition in which one or both of a baby's testicles do not fully descend into the bottom of the scrotum. Newborns with cryptorchidism are at increased risk of developing infertility later in life. The aim of this study was to develop a novel diagnostic model for cryptorchidism and to identify new biomarkers associated with cryptorchidism. Methods The study data were obtained from RNA sequencing data of cryptorchid patients from Nantong University Hospital and the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to obtain differentially expressed genes (DEGs) between the control and cryptorchid groups. These DEGs were analyzed for their functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using GSEA software. Random Forest algorithm was used to screen central genes based on these DEGs. Neuralnet software package was used to develop artificial neural network models. Based on clinical data, receiver operating characteristic (ROC) was used to validate the models. Single‐cell sequencing analysis was used for the pathogenesis of cryptorchidism. Results We obtained a total of 525 important DEGs related to cryptorchidism, which are mainly associated with biological functions such as supramolecular complexes and microtubule cytoskeleton. Random forest approach screening obtained eight hub genes. A neural network based on the hub genes showed a 100% success rate of the model. Finally, single‐cell sequencing analysis validated the hub genes. Conclusion We developed a novel diagnostic model for cryptorchidism using artificial neural networks and validated its utility as an effective diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fengzi151发布了新的文献求助10
2秒前
OFish完成签到,获得积分10
3秒前
外向电脑完成签到,获得积分10
3秒前
NexusExplorer应助狗头采纳,获得10
3秒前
赘婿应助狗头采纳,获得10
3秒前
4秒前
4秒前
NexusExplorer应助欧欧采纳,获得10
4秒前
6秒前
qiuxuan100发布了新的文献求助10
7秒前
7秒前
李骞发布了新的文献求助10
11秒前
ddong发布了新的文献求助10
11秒前
抚琴祛魅完成签到 ,获得积分10
12秒前
14秒前
young完成签到,获得积分10
14秒前
mdjinij发布了新的文献求助10
15秒前
ddong完成签到,获得积分10
18秒前
诚心山芙发布了新的文献求助10
18秒前
FashionBoy应助李骞采纳,获得10
19秒前
23秒前
小小斌完成签到,获得积分10
23秒前
小二郎应助灿灿的资源采纳,获得10
25秒前
勤劳滑板完成签到 ,获得积分10
25秒前
沉心静气搞学习应助LIU采纳,获得30
32秒前
李涛完成签到,获得积分20
32秒前
22222发布了新的文献求助10
32秒前
YuuuY完成签到 ,获得积分10
34秒前
36秒前
37秒前
凌梦凡发布了新的文献求助10
40秒前
43秒前
zhangwenjie完成签到 ,获得积分10
44秒前
枫叶完成签到 ,获得积分10
46秒前
Ethan发布了新的文献求助10
50秒前
51秒前
小药丸完成签到 ,获得积分10
55秒前
Amelia完成签到 ,获得积分10
56秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253251
求助须知:如何正确求助?哪些是违规求助? 4416710
关于积分的说明 13750418
捐赠科研通 4288976
什么是DOI,文献DOI怎么找? 2353233
邀请新用户注册赠送积分活动 1349967
关于科研通互助平台的介绍 1309716