Exogenous Methylglyoxal Alleviates Drought-Induced ‘’Plant Diabetes‘’ and Leaf Senescence in Maize

甲基乙二醛 分解代谢 海藻糖 生物 糖酵解 化学 生物化学 新陈代谢
作者
Yi‐Hsuan Lin,Ya-Ning Zhou,Xinqiang Liang,Yu-ka Jin,Zu-Dong Xiao,Yingjun Zhang,Cheng Huang,Hong Bo,Zhen-Yuan Chen,Shun-Li Zhou,Si Shen
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:75 (7): 1982-1996
标识
DOI:10.1093/jxb/erad503
摘要

Drought-induced leaf senescence is associated with high sugar levels, which bears some resemblance to the syndrome of diabetes in humans; however, the underlying mechanisms of such 'plant diabetes' on carbon imbalance and the corresponding detoxification strategy are not well understood. Here, we investigated the regulatory mechanism of exogenous methylglyoxal (MG) on 'plant diabetes' in maize plants under drought stress applied via foliar spraying during the grain-filling stage. Exogenous MG delayed leaf senescence and promoted photoassimilation, thereby reducing the yield loss induced by drought by 14%. Transcriptome and metabolite analyses revealed that drought increased sugar accumulation in leaves through inhibition of sugar transporters that facilitate phloem loading. This led to disequilibrium of glycolysis and overaccumulation of endogenous MG. Application of exogenous MG up-regulated glycolytic flux and the glyoxalase system that catabolyses endogenous MG and glycation end-products, ultimately alleviating 'plant diabetes'. In addition, the expression of genes facilitating anabolism and catabolism of trehalose-6-phosphate was promoted and suppressed by drought, respectively, and exogenous MG reversed this effect, implying that trehalose-6-phosphate signaling in the mediation of 'plant diabetes'. Furthermore, exogenous MG activated the phenylpropanoid biosynthetic pathway, promoting the production of lignin and phenolic compounds, which are associated with drought tolerance. Overall, our findings indicate that exogenous MG activates defense-related pathways to alleviate the toxicity derived from 'plant diabetes', thereby helping to maintain leaf function and yield production under drought.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1LDan发布了新的文献求助10
刚刚
1秒前
代码不跑我就跑完成签到,获得积分10
2秒前
CipherSage应助西贝贝采纳,获得10
2秒前
壳米完成签到,获得积分10
2秒前
懒羊羊发布了新的文献求助10
2秒前
3秒前
木目今欣完成签到,获得积分10
4秒前
你走以后完成签到,获得积分10
6秒前
78物业发布了新的文献求助30
6秒前
哇哈哈完成签到 ,获得积分10
7秒前
7秒前
7秒前
认真乐双完成签到,获得积分10
8秒前
8秒前
ding应助yyj采纳,获得10
9秒前
9秒前
11秒前
悦耳冰萍完成签到,获得积分10
12秒前
12秒前
tangzanwayne发布了新的文献求助10
12秒前
13秒前
田様应助crystal采纳,获得10
13秒前
yaoyao发布了新的文献求助10
15秒前
脑洞疼应助不吃香菜采纳,获得10
15秒前
Steven完成签到,获得积分10
15秒前
DJ发布了新的文献求助10
15秒前
16秒前
cbz发布了新的文献求助10
16秒前
小七完成签到,获得积分10
17秒前
嘟嘟豆806完成签到 ,获得积分10
17秒前
QiJiLuLu完成签到,获得积分10
17秒前
小二郎应助蔺博涵采纳,获得10
17秒前
Steven发布了新的文献求助10
17秒前
BEST发布了新的文献求助10
18秒前
YLJ1994发布了新的文献求助10
18秒前
18秒前
无花果应助Herbs采纳,获得10
18秒前
闪闪水云完成签到 ,获得积分10
18秒前
yn发布了新的文献求助10
19秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Mechanical Methods of the Activation of Chemical Processes 510
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2420181
求助须知:如何正确求助?哪些是违规求助? 2110635
关于积分的说明 5340871
捐赠科研通 1837943
什么是DOI,文献DOI怎么找? 915161
版权声明 561142
科研通“疑难数据库(出版商)”最低求助积分说明 489376