Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato

生物 驯化 基因 适应(眼睛) 耐旱性 非生物成分 脱落酸 非生物胁迫 基因家族 调节基因 基因组 遗传学 基因表达 植物 生态学 神经科学
作者
Peng Cao,Jun Yang,Linghao Xia,Zhonghui Zhang,Zeyong Wu,Yingchen Hao,Penghui Liu,Chao Wang,Chun Li,Jie Yang,Jun Lai,Xianggui Li,Meng Deng,Shouchuang Wang
出处
期刊:Molecular Plant [Elsevier BV]
卷期号:17 (4): 579-597 被引量:19
标识
DOI:10.1016/j.molp.2024.02.003
摘要

Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
pcr163应助科研通管家采纳,获得50
刚刚
Orange应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
科研通AI5应助从容以山采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
鱼鱼发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
PPP关闭了PPP文献求助
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Grazia应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
今后应助zw采纳,获得10
2秒前
lab完成签到 ,获得积分0
3秒前
ice完成签到 ,获得积分10
3秒前
4秒前
4秒前
星河完成签到,获得积分10
4秒前
zzzz完成签到,获得积分10
4秒前
Fancy完成签到,获得积分10
4秒前
wangqi完成签到,获得积分10
5秒前
珈小羽完成签到,获得积分10
5秒前
glj完成签到,获得积分10
6秒前
8秒前
cyz发布了新的文献求助10
8秒前
江月年发布了新的文献求助10
8秒前
凄凉山谷的风完成签到,获得积分10
8秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821362
求助须知:如何正确求助?哪些是违规求助? 3364017
关于积分的说明 10427134
捐赠科研通 3082551
什么是DOI,文献DOI怎么找? 1695723
邀请新用户注册赠送积分活动 815232
科研通“疑难数据库(出版商)”最低求助积分说明 769050