阳极
法拉第效率
材料科学
锂(药物)
电化学
扩散
兴奋剂
硅
电池(电)
化学工程
离子
纳米技术
分析化学(期刊)
化学
光电子学
电极
热力学
物理化学
色谱法
有机化学
医学
物理
内分泌学
工程类
功率(物理)
作者
Mengxuan Zhang,Lu Zhao,Dong Sun,Yankun Sun,Chunming Xu,Shichao Lu,Tao Li,Yongfeng Li,Zhihua Xiao
标识
DOI:10.1016/j.apsusc.2023.157254
摘要
The poor electronical conductivity and large volume change of nano-silicon anode has seriously hindered its further application. To overcome these drawbacks, we employed the S-doped multiwalled carbon nanotubes (SCNTs) as the conductive additive to fabricating a scaffolded framework for the first time. The as-assembled Si anode with 5 wt% SCNTs (Si@C-5SCNTs) shows a large specific capacity of 939 mA h g−1 at 2 A g−1 within 0–1 V, significantly higher than that of Si@C (466 mA h g−1) and Si@C-5CNTs (720 mA h g−1), showing a superior rate performance. Besides, it shows higher initial coulombic efficiency, Li-ion diffusion coefficient, cycling performance, and smaller volume change than that of Si@C and Si@C-CNTs at room temperature. Even at 40 ℃, the Si@C-5SCNTs anode still show a superior rate performance (1842 and 819 mAh g−1 at 0.05 and 2 A g−1, respectively) and cycling stability (83.6% capacity retention) than that of Si@C and Si@C-5CNTs. To better explain the significantly enhanced electrochemical performance of Si anode both room and high temperature conditions, both the chemo-mechanical coupling and internal temperature distribution models have been rational constructed, and further demonstrated that the SCNTs can effectively buffer the volume expansion and reduce the internal local temperature rise.
科研通智能强力驱动
Strongly Powered by AbleSci AI