A machine learning prediction model for quantitative analyzing the influence of non-radiative voltage loss on non-fullerene organic solar cells

有机太阳能电池 轨道能级差 富勒烯 接受者 辐射传输 带隙 化学 材料科学 计算化学 分子 物理 光电子学 有机化学 光学 量子力学 聚合物
作者
Di Huang,Kuo Wang,Zhennan Li,Haixin Zhou,Xiaojie Zhao,Xinyu Peng,Jipeng Wu,Jiaojiao Liang,Juan Meng,Ling Zhao
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:475: 145958-145958 被引量:22
标识
DOI:10.1016/j.cej.2023.145958
摘要

The open-circuit voltage (Voc) in organic solar cells (OSCs) hardly exceeds 1.0 V because of the relatively high voltage loss caused by charge non-radiative recombination at the donor–acceptor interface. Herein, in this paper the machine learning (ML) prediction models are used to explore the relationship among the donor and acceptor structures, electronic properties, and the non-radiative voltage loss (△Vocnon-rad). Among the models, the prediction performance from the optimal random forest (RF) model has 13.48% enhancement compared with that of the support vector regression (SVR) model. A combination of correlation and importance is used to collaboratively screen out the key features of acceptor materials with low △Vocnon-rad in OSCs. The importance analysis indicates that the benzene-1,2-diamine, prop-2-en-1-imine and nitrogen sulfur bond are the important structures, which represents the electron-deficient unit (A') in the fused-ring core of non-fullerene acceptors (NFAs). It is worth mentioning that the selected key features also have good applicability in the small data with ternary OSCs, and its coefficient of determination (R2) is 0.704 in the testing set. In addition, the four new Y6 derivatives (Y6O, Y6B, Y18B, and Y18U) are designed by the screened key features. And quantum chemical calculations show that the introduction of benzene ring and branched side chain to the A' unit can make the HOMO and LUMO energy levels of the molecule tend to rise. More importantly, the HOMO-LUMO gap is 2.69 eV and the optical band gap is 1.80 eV in Y18B, which are smaller than those of Y6. Y18B also has the smallest electrostatic potential of 5.08 kcal/mol on the molecular surface. Significantly, it decreases the singlet–triplet energy gap and exciton binding energy of Y18B for effectively reducing the △Vocnon-rad in the device. This work provides an effective model to accelerate the exploration of new and highly efficient NFA-OSCs with the lower △Vocnon-rad.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁岁菌完成签到,获得积分10
1秒前
淡然善斓完成签到 ,获得积分10
2秒前
2秒前
3秒前
txg完成签到,获得积分20
5秒前
无限的谷丝完成签到,获得积分10
8秒前
Narcisa发布了新的文献求助10
9秒前
10秒前
12秒前
阳光梦易完成签到 ,获得积分10
13秒前
意绵雅风完成签到,获得积分10
14秒前
望TIAN完成签到,获得积分10
15秒前
Xzz发布了新的文献求助30
17秒前
哈哈发布了新的文献求助10
17秒前
Amo应助跳跳糖采纳,获得10
17秒前
joleisalau发布了新的文献求助10
18秒前
19秒前
故意的怜晴完成签到 ,获得积分10
19秒前
21秒前
25秒前
zzz发布了新的文献求助10
27秒前
27秒前
29秒前
31秒前
32秒前
科研通AI2S应助宇老师采纳,获得10
32秒前
ttsgs123发布了新的文献求助10
34秒前
单纯忆灵应助KinKrit采纳,获得10
34秒前
爆米花应助KinKrit采纳,获得10
34秒前
天天快乐应助KinKrit采纳,获得10
34秒前
水手_发布了新的文献求助10
34秒前
Jasper应助KinKrit采纳,获得10
34秒前
善学以致用应助KinKrit采纳,获得10
34秒前
李爱国应助KinKrit采纳,获得10
34秒前
orixero应助KinKrit采纳,获得10
34秒前
小马甲应助KinKrit采纳,获得10
35秒前
35秒前
林狗发布了新的文献求助10
36秒前
郭宇发布了新的文献求助10
37秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976