生成语法
人类血液
对接(动物)
人工智能
计算机科学
化学
计算生物学
机器学习
生物
医学
生理学
护理部
作者
Dhan Lord Fortela,Ashley P. Mikolajczyk,Miranda R. Carnes,Wayne Sharp,Emmanuel Revellame,Rafael Hernández,William E. Holmes,Mark E. Zappi
出处
期刊:BioTechniques
[Future Science Ltd]
日期:2023-11-10
卷期号:76 (1): 14-26
被引量:8
标识
DOI:10.2144/btn-2023-0070
摘要
This study computationally evaluates the molecular docking affinity of various perfluoroalkyl and polyfluoroalkyl substances (PFAs) towards blood proteins using a generative machine-learning algorithm, DiffDock, specialized in protein-ligand blind-docking learning and prediction. Concerns about the chemical pathways and accumulation of PFAs in the environment and eventually in the human body has been rising due to empirical findings that levels of PFAs in human blood has been rising. DiffDock may offer a fast approach in determining the fate and potential molecular pathways of PFAs in human body.
科研通智能强力驱动
Strongly Powered by AbleSci AI