The Rise and Potential of Large Language Model Based Agents: A Survey

动作(物理) 计算机科学 通用人工智能 人工智能 智能代理 管理科学 工程类 量子力学 物理
作者
Zhiheng Xi,Wen-Xiang Chen,Xin Guo,Wei He,Yiwen Ding,Boyang Hong,Ming Zhang,Junzhe Wang,Senjie Jin,Enyu Zhou,Rui Zheng,Xiaoran Fan,Xiao Wang,Limao Xiong,Qin Liu,Yuhao Zhou,Weiran Wang,Changhao Jiang,Yicheng Zou,Xiangyang Liu,Zhangyue Yin,Shihan Dou,Rongxiang Weng,Wensen Cheng,Qi Zhang,Wenjuan Qin,Yongyan Zheng,Xipeng Qiu,X. Huan,Tao Gui
出处
期刊:Cornell University - arXiv 被引量:119
标识
DOI:10.48550/arxiv.2309.07864
摘要

For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent agents, but they mainly focus on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many researchers have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. In this paper, we perform a comprehensive survey on LLM-based agents. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents. Building upon this, we present a general framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored for different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge from an agent society, and the insights they offer for human society. Finally, we discuss several key topics and open problems within the field. A repository for the related papers at https://github.com/WooooDyy/LLM-Agent-Paper-List.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的妍完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
和和和完成签到,获得积分10
2秒前
2秒前
2秒前
欧阳小枫完成签到 ,获得积分10
3秒前
舒心傲柏完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
酷波er应助称心曼安采纳,获得10
4秒前
科目三应助Fezz采纳,获得10
4秒前
4秒前
Arctic完成签到,获得积分20
4秒前
Hello应助守护星星采纳,获得10
5秒前
二十七完成签到 ,获得积分10
5秒前
bkagyin应助铁锅炖大鹅采纳,获得10
5秒前
稳重秋寒发布了新的文献求助10
5秒前
fzzf发布了新的文献求助30
6秒前
披萨红发布了新的文献求助10
6秒前
没有昵称完成签到,获得积分10
6秒前
科研通AI2S应助Aaaa采纳,获得10
7秒前
紫苏发布了新的文献求助10
7秒前
Arctic发布了新的文献求助10
7秒前
TomatoPan发布了新的文献求助10
8秒前
8秒前
郑泽森发布了新的文献求助10
8秒前
8秒前
思源应助陶可涵采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
卡卡西应助科研通管家采纳,获得30
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821445
求助须知:如何正确求助?哪些是违规求助? 3364061
关于积分的说明 10427327
捐赠科研通 3082651
什么是DOI,文献DOI怎么找? 1695724
邀请新用户注册赠送积分活动 815244
科研通“疑难数据库(出版商)”最低求助积分说明 769069