Collaborative path planning and task allocation for multiple agricultural machines

Dijkstra算法 计算机科学 运动规划 路径(计算) 最短路径问题 调度(生产过程) 排队 数学优化 任务(项目管理) 过程(计算) 运筹学 图形 人工智能 工程类 数学 机器人 理论计算机科学 计算机网络 操作系统 系统工程
作者
Ning Wang,X. Jessie Yang,Tianhai Wang,Jianxing Xiao,Man Zhang,Hao Wang,Han Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108218-108218 被引量:44
标识
DOI:10.1016/j.compag.2023.108218
摘要

Path planning and task allocation are critical concerns in multi-machine collaborative operations for unmanned farms. Nevertheless, several problems remain in the operation of agricultural machinery, such as the slow path planning algorithm, the omission of the working area, and the unreasonable scheduling of machines, resulting in low efficiency and wasted resources. Collaborative and complete coverage path planning was achieved to solve the problems of slow path planning algorithms and the omission of working areas. The farm’s electronic map was constructed using the topological map method. The improved Dijkstra algorithm based on priority queues was combined with three different complete coverage methods: the nested method, the reciprocating method, and the combination of nested and internal spiral path methods. The simulation results show that the improved Dijkstra method based on priority queues can effectively minimize the running time of the algorithm. The reciprocating method has a higher coverage index than the other two methods, with an average coverage rate of 94.73 %. To solve the problem of illogical scheduling of the same type of agricultural machines, an improved ant colony method was presented based on the whole working path to minimize the path cost. The simulation results show that the proposed method can allocate the task properly, and the path cost is reduced by 14 %–33 %. By combining the proposed path planning and task allocation methods, the whole-process path planning of a single agricultural machine and multiple agricultural machines of the same type was achieved, providing a technical solution for promoting the construction of unmanned farms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吃西瓜皮发布了新的文献求助10
刚刚
南城雨落发布了新的文献求助10
刚刚
ZYL发布了新的文献求助10
1秒前
1秒前
22完成签到 ,获得积分10
1秒前
groundsocket完成签到,获得积分10
1秒前
盛隆发布了新的文献求助10
2秒前
hanliulaixi完成签到,获得积分10
2秒前
小二郎应助ivy采纳,获得10
2秒前
活泼的遥完成签到 ,获得积分10
3秒前
菜狗完成签到,获得积分20
3秒前
汉堡包应助自信念云采纳,获得10
3秒前
3秒前
晚晚发布了新的文献求助10
3秒前
隐形曼青应助shadow采纳,获得10
4秒前
4秒前
蓝天应助读书的时候采纳,获得10
4秒前
徐智秀发布了新的文献求助100
5秒前
杉杉小趴菜完成签到,获得积分10
5秒前
Aga_Sea发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
豆豆发布了新的文献求助10
5秒前
6秒前
zzzeeee发布了新的文献求助10
6秒前
慧慧完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Time发布了新的文献求助10
8秒前
锅巴完成签到,获得积分10
9秒前
打打应助babuanti采纳,获得10
9秒前
月月鸟发布了新的文献求助10
9秒前
背后问玉发布了新的文献求助10
9秒前
9秒前
10秒前
冷静以山完成签到,获得积分10
10秒前
笑点低麦片完成签到,获得积分20
10秒前
10秒前
小二郎应助Aoevr采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704216
求助须知:如何正确求助?哪些是违规求助? 5156090
关于积分的说明 15241417
捐赠科研通 4858293
什么是DOI,文献DOI怎么找? 2607054
邀请新用户注册赠送积分活动 1558184
关于科研通互助平台的介绍 1515994