Privacy-Preserving Federated Bayesian Optimization with Learnable Noise

计算机科学 差别隐私 贝叶斯优化 信息敏感性 贝叶斯概率 噪音(视频) 数据挖掘 最优化问题 功能(生物学) 数学优化 算法 计算机安全 人工智能 数学 进化生物学 生物 图像(数学)
作者
Qiqi Liu,Yuping Yan,Yaochu Jin
出处
期刊:Information Sciences [Elsevier BV]
卷期号:653: 119739-119739
标识
DOI:10.1016/j.ins.2023.119739
摘要

Conventional Bayesian optimization approaches assume that all available data are located on one device, which does not consider privacy concerns since data storage and transmission may pose threats to data security. Existing differential privacy-based approaches can protect sensitive information by adding well-calibrated noise to the real objective value of the query input, which may seriously degrade the performance of Bayesian optimization. To address this issue, we propose to learn the noise level of each solution instead of the newly infilled solutions by optimizing a utility-privacy function that considers obfuscating the information of the current best solution, and striking a balance between exploration and exploitation. In this way, the real objective values and the current best solution will be protected. We further extend the proposed approach to a federated setting by considering multiple clients. Our experimental results show that the proposed algorithm can achieve very competitive optimization performance on ten test functions while being able to preserve data privacy. In addition, at the lowest level of privacy protection, the current best solution is leaked in less than 5 out of 91 rounds of surrogate updates for the proposed algorithm, which is significantly smaller than that of the algorithm under comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧一笑完成签到 ,获得积分10
1秒前
爆米花应助24142采纳,获得10
1秒前
飞云完成签到,获得积分10
2秒前
小梁完成签到,获得积分20
3秒前
1111完成签到 ,获得积分10
4秒前
LIKO完成签到,获得积分10
6秒前
Lucas应助lunar采纳,获得10
7秒前
smart应助lijunying采纳,获得10
7秒前
7秒前
lwh104完成签到,获得积分10
8秒前
scm应助含蓄的荔枝采纳,获得30
8秒前
8秒前
9秒前
9秒前
9秒前
NYW应助含蓄的荔枝采纳,获得10
9秒前
9秒前
9秒前
Agnes应助含蓄的荔枝采纳,获得10
9秒前
NYW应助含蓄的荔枝采纳,获得10
9秒前
无名完成签到 ,获得积分10
9秒前
清新的翠完成签到,获得积分20
10秒前
Khr1stINK发布了新的文献求助10
10秒前
11秒前
11秒前
Tzzl0226完成签到,获得积分10
12秒前
隐形的觅波完成签到 ,获得积分10
13秒前
木瓜完成签到,获得积分10
14秒前
14秒前
FashionBoy应助南北采纳,获得10
14秒前
15秒前
17秒前
cdercder应助含蓄的荔枝采纳,获得10
17秒前
17秒前
cdercder应助含蓄的荔枝采纳,获得10
17秒前
Accepted应助含蓄的荔枝采纳,获得10
18秒前
杨77完成签到,获得积分10
18秒前
scm应助含蓄的荔枝采纳,获得30
18秒前
我不完成签到,获得积分10
18秒前
18秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958