Multi-parametric MRI-based Peritumoral Radiomics for Stage IIA and IIB Classification of Cervical Cancer:A Multicenter Study

无线电技术 阶段(地层学) 医学 宫颈癌 放射科 癌症 肿瘤科 内科学 地质学 古生物学
作者
Ying Wang,Weixiao Liu,Yulian Chen,Fei Wang,Xiaoyun Liang,Xiao Zhang,Fang Jin
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4772065/v1
摘要

Abstract Objective: The aim of the study is to establish a multiparametric MRI (mpMRI)-based peritumoral radiomics nomogram for preoperatively predicting IIA and IIB classification of cervical Cancer preoperatively. Methods: 208 patients with histologically confirmed cervical cancer from three institutions were enrolled in this study. All the cases were randomly divided into the training cohort (n=145) and the validation cohort (n=63). The performance of the nomogram was assessed with respect to its calibration, discrimination, and clinical usefulness. The independent-sample t test and the Chi-squared test were conducted to assess the significance of clinical factors between the training cohort and the validation cohort. The Pearson correlation coefficient analysis and recursive feature elimination algorithm were adopted successively to obtain the well-representative features. Different classifiers were compared to develop the optimal radiomics signature across 5-fold cross validation. The calibration curves and decision curve analysis were conducted to evaluate the clinical utility of the optimal model. The radiomics model was constructed using logistic regression. Results: The peritumoral radiomics models were superior to the intratumoral radiomics models, regardless of single sequence model or fusion model (all P <0.001*). DWI-based peritumoral radiomics model performed best with the AUCs of 0.975 (0.965−0.983) and 0.899 (0.880−0.916) in the training and validation cohort, respectively. There was no significant difference between the validation AUCs of DWI-based and fusion peritumoral radiomics model (0.899 vs. 0.895, P=0.566). In addition, 3 pixel peritumoral regions of radiomic signatures have a much better discrimination performance in distinguishing IIA and IIB stage by comparing the 2,4,5 pixels extension surrounding the tumor. Conclusion: MRI-based radiomics model from peritumoral regions of cervical cancer outperformed radiologists for the preoperative diagnosis of IIA and IIB stage, which could provide a noninvasive and reliable way of individualized treatment plans for patients with cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的鸿完成签到 ,获得积分10
刚刚
梦鱼完成签到,获得积分10
1秒前
SciGPT应助AoAoo采纳,获得10
2秒前
5秒前
April完成签到,获得积分10
7秒前
水灯霖完成签到,获得积分10
9秒前
房产中介发布了新的文献求助10
10秒前
11秒前
April发布了新的文献求助10
11秒前
午见千山应助AoAoo采纳,获得10
12秒前
14秒前
17秒前
17秒前
zjz发布了新的文献求助10
17秒前
风至完成签到,获得积分10
17秒前
未来へ完成签到 ,获得积分10
20秒前
充电宝应助赖赖在做科研采纳,获得20
22秒前
wangwenzhe发布了新的文献求助10
22秒前
善良的剑通应助AoAoo采纳,获得10
23秒前
酷波er应助奂锐123采纳,获得10
27秒前
qiuyang发布了新的文献求助10
28秒前
31秒前
32秒前
科研通AI5应助wangwenzhe采纳,获得10
33秒前
33秒前
行走De太阳花完成签到,获得积分10
33秒前
34秒前
秀丽笑容发布了新的文献求助10
36秒前
AoAoo发布了新的文献求助10
36秒前
Zhe发布了新的文献求助10
37秒前
知止发布了新的文献求助10
37秒前
38秒前
rainsy完成签到,获得积分10
40秒前
44秒前
哈哈完成签到,获得积分10
45秒前
义气珩完成签到,获得积分10
46秒前
友好惜儿完成签到 ,获得积分10
47秒前
知止完成签到,获得积分10
47秒前
48秒前
susu完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825