On Efficient Training of Large-Scale Deep Learning Models

计算机科学 培训(气象学) 比例(比率) 深度学习 人工智能 机器学习 物理 量子力学 气象学
作者
Li Shen,Yan Sun,Zhiyuan Yu,Liang Ding,Xinmei Tian,Dacheng Tao
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:57 (3): 1-36 被引量:2
标识
DOI:10.1145/3700439
摘要

The field of deep learning has witnessed significant progress in recent times, particularly in areas such as computer vision (CV), natural language processing (NLP), and speech. The use of large-scale models trained on vast amounts of data holds immense promise for practical applications, enhancing industrial productivity and facilitating social development. However, it suffers extremely from the unstable training process and stringent requirements of computational resources. With the increasing demands on the adaption of computational capacity, though numerous studies have explored the efficient training field to a certain extent, a comprehensive summarization/guideline on those general acceleration techniques of training large-scale deep learning models is still much anticipated. In this survey, we present a detailed review of the general techniques for training acceleration. We consider the fundamental update formulation and split its basic components into five main perspectives: (1) “data-centric,” including dataset regularization, data sampling, and data-centric curriculum learning techniques, which can significantly reduce the computational complexity of the data samples; (2) “model-centric,” including acceleration of basic modules, compression training, model initialization, and model-centric curriculum learning techniques, which focus on accelerating the training via reducing the calculations on parameters and providing better initialization; (3) “optimization-centric,” including the selection of learning rate, the employment of large batch size, the designs of efficient objectives, and model average techniques, which pay attention to the training policy and improving the generality for the large-scale models; (4) “budgeted training,” including some distinctive acceleration methods on source-constrained situations, e.g., for limitation on the total iterations; and (5) “system-centric,” including some efficient distributed frameworks and open source libraries that provide adequate hardware support for the implementation of the above-mentioned acceleration algorithms. By presenting this comprehensive taxonomy, our survey presents a comprehensive review to understand the general mechanisms within each component and their joint interaction. Meanwhile, we further provide a detailed analysis and discussion of future works on the development of general acceleration techniques, which could inspire us to re-think and design novel efficient paradigms. Overall, we hope that this survey will serve as a valuable guideline for general efficient training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu关闭了wu文献求助
1秒前
超帅的访云完成签到,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
小二郎应助太阳采纳,获得10
2秒前
gogogog完成签到 ,获得积分10
2秒前
烂漫的冰蓝完成签到,获得积分20
2秒前
Monica完成签到,获得积分10
2秒前
2秒前
素素发布了新的文献求助20
2秒前
jeas777发布了新的文献求助10
3秒前
3秒前
xin_ok发布了新的文献求助10
3秒前
4秒前
清萍红檀完成签到,获得积分10
4秒前
可靠之玉完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
天上的云在飘完成签到,获得积分20
6秒前
msy完成签到,获得积分10
6秒前
7秒前
7秒前
小古完成签到,获得积分10
7秒前
7秒前
爆米花应助Jepsen采纳,获得10
7秒前
123完成签到,获得积分10
8秒前
8秒前
所所应助NNN采纳,获得10
8秒前
传奇3应助爱笑的傲薇采纳,获得10
8秒前
爱科研的小多肉完成签到,获得积分10
9秒前
9秒前
科研通AI5应助TIAN采纳,获得10
9秒前
JamesPei应助孟祥磊采纳,获得10
10秒前
10秒前
10秒前
zheng发布了新的文献求助10
10秒前
曾经电源发布了新的文献求助10
10秒前
124完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798