Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation

编码器 人工智能 图像(数学) 计算机科学 图像分割 分割 语义鸿沟 编码(内存) 模式识别(心理学) 图像检索 操作系统
作者
Haonan Wang,Peng Cao,Jinzhu Yang,Osmar R. Zaı̈ane
出处
期刊:Neural Networks [Elsevier BV]
卷期号:178: 106546-106546 被引量:29
标识
DOI:10.1016/j.neunet.2024.106546
摘要

Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuhaolover应助帅仁123采纳,获得10
2秒前
mc1220完成签到,获得积分10
3秒前
4秒前
科研通AI5应助刺儿采纳,获得10
4秒前
metoo发布了新的文献求助10
5秒前
5秒前
扒开皮皮完成签到,获得积分10
6秒前
chiweiyoung完成签到,获得积分10
6秒前
扶风追梦发布了新的文献求助10
6秒前
8秒前
LLLLL完成签到,获得积分20
8秒前
扒开皮皮发布了新的文献求助10
9秒前
zzz关注了科研通微信公众号
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
帅仁123完成签到,获得积分20
12秒前
似宁发布了新的文献求助10
13秒前
黄健伟发布了新的文献求助10
14秒前
SYLH应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
David应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
虔三愿发布了新的文献求助10
17秒前
SYLH应助科研通管家采纳,获得20
17秒前
霖昭应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
烂漫青槐应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434