Morphological control of bundled actin networks subject to fixed-mass depletion

缩放比例 生物物理学 分子质量 化学 核心 物理 化学物理 生物 数学 生物化学 细胞生物学 几何学
作者
James Stanier Clarke,Lauren Melcher,Anne D. Crowell,Francis Cavanna,Justin R. Houser,Kristin Graham,Allison Green,Jeanne C. Stachowiak,Thomas M. Truskett,Delia J. Milliron,Adrianne M. Rosales,Moumita Das,José Alvarado
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:161 (7) 被引量:4
标识
DOI:10.1063/5.0197269
摘要

Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters such as the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin in silico and in vitro. We examine the maximum strength of the depletion interaction potential U∗ as a function of q, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation U∗ ∼ qζ for two cases: fixed volume fraction φ and fixed mass density ρ. For fixed volume fraction, we report ζ < 0. For the fixed mass density case, we report ζ > 0, which suggests that the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes lead to weakly bundled or strongly bundled morphologies. For these conditions, we find that the mesh size and intra-bundle spacing between filaments across the different morphologies do not show significant differences, while the dynamic light scattering relaxation time and storage modulus between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size and give insights into depletion interaction mechanisms under the fixed-depletant-mass constraint relevant to living cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxm完成签到 ,获得积分10
5秒前
luffy完成签到 ,获得积分10
5秒前
阿拉完成签到,获得积分10
12秒前
一一完成签到 ,获得积分10
12秒前
杨子怡完成签到 ,获得积分10
14秒前
16秒前
研友_Z1eDgZ完成签到,获得积分10
17秒前
20秒前
Jenny发布了新的文献求助10
21秒前
21秒前
oyly完成签到 ,获得积分10
22秒前
reset完成签到 ,获得积分10
23秒前
潘fujun完成签到 ,获得积分10
24秒前
ES完成签到 ,获得积分0
25秒前
文献高手完成签到 ,获得积分10
28秒前
壮观惜文发布了新的文献求助10
28秒前
青树柠檬完成签到 ,获得积分10
29秒前
阔达磬完成签到,获得积分10
32秒前
小琪完成签到 ,获得积分10
41秒前
海边的曼彻斯特完成签到 ,获得积分10
44秒前
啵妞完成签到 ,获得积分10
45秒前
49秒前
wyh295352318完成签到 ,获得积分10
53秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
善良的剑通完成签到 ,获得积分10
1分钟前
安安完成签到 ,获得积分10
1分钟前
从容的水壶完成签到 ,获得积分10
1分钟前
星希完成签到 ,获得积分10
1分钟前
司纤户羽完成签到 ,获得积分10
1分钟前
Bunny完成签到,获得积分10
1分钟前
1分钟前
Lyanph完成签到 ,获得积分10
1分钟前
翁雁丝完成签到 ,获得积分10
1分钟前
充电宝应助Bunny采纳,获得10
1分钟前
awrawsaf完成签到 ,获得积分10
1分钟前
温暖的蚂蚁完成签到 ,获得积分10
1分钟前
haochi完成签到,获得积分10
1分钟前
1分钟前
五月完成签到 ,获得积分10
1分钟前
Bunny发布了新的文献求助10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Face recognition: challenges,achievementsandfuture directions. 400
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847893
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561737
捐赠科研通 3110924
什么是DOI,文献DOI怎么找? 1714590
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775471