Machine Learning-Enhanced Bacteria Detection Using a Fluorescent Sensor Array with Functionalized Graphene Quantum Dots

量子点 石墨烯 致病菌 材料科学 纳米技术 荧光 细菌 生物 物理 光学 遗传学
作者
Xin Zhang,Weiwei Zhu,LiangHui Mei,Shan‐Ting Zhang,Jian Liu,Fangbin Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (2): 3084-3096 被引量:17
标识
DOI:10.1021/acsami.4c20078
摘要

Pathogenic bacteria are the source of many serious health problems, such as foodborne diseases and hospital infections. Timely and accurate detection of these pathogens is of vital significance for disease prevention, control of epidemic spread, and protection of public health security. Rapid identification of pathogenic bacteria has become a research focus in recent years. In contrast to traditional large-scale detection equipment, the fluorescent sensor array developed in this study can detect bacteria within just five min and is cost-effective. The array employs nitrogen- and sulfur-doped graphene quantum dots (NS-GQDs) synthesized through a simple hydrothermal process, making it environmentally friendly by avoiding toxic metal elements. Functionalized with antibiotics, spectinomycin, kanamycin, and polymyxin B, the NS-GQDs (renamed as S-NS-GQDs, K-NS-GQDs, and B-NS-GQDs) exhibit variable affinities for different bacteria, enabling broad-spectrum detection without targeting specific species. Upon binding with bacteria, the fluorescence intensity of the functionalized NS-GQDs decreases significantly. The sensor array exhibits distinct fluorescence responses to different bacterial species, which can be distinguished by using various machine learning algorithms. The results demonstrate that the platform can quickly and accurately identify and quantify five bacterial species, showing excellent performance in terms of accuracy, sensitivity, and stability. This makes it a promising tool with great practical application prospects in pathogenic bacterial detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyw完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
zanedou完成签到,获得积分10
1秒前
Johnlian完成签到,获得积分10
2秒前
七月兔完成签到,获得积分10
2秒前
依古比古完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
00完成签到 ,获得积分20
2秒前
coke完成签到,获得积分10
3秒前
DOODBYE完成签到,获得积分10
3秒前
小棉背心完成签到 ,获得积分10
4秒前
子车茗应助红箭烟雨采纳,获得30
4秒前
4秒前
紧张的冷卉完成签到,获得积分10
4秒前
123完成签到,获得积分20
5秒前
余芝完成签到,获得积分10
5秒前
5秒前
77发布了新的文献求助10
6秒前
6秒前
leelmomimi完成签到,获得积分10
6秒前
勤奋酒窝完成签到,获得积分10
6秒前
学不明白完成签到,获得积分10
6秒前
曾泳钧完成签到,获得积分10
6秒前
李顺杰完成签到,获得积分10
7秒前
yizhang2025完成签到,获得积分10
7秒前
情怀应助YBR采纳,获得10
7秒前
张楚岚完成签到,获得积分10
7秒前
dddd完成签到,获得积分10
8秒前
張肉肉完成签到,获得积分10
9秒前
fan完成签到,获得积分10
9秒前
方仔完成签到,获得积分10
9秒前
云云完成签到 ,获得积分10
9秒前
9秒前
科研顺利完成签到,获得积分10
9秒前
9秒前
健忘蓝血完成签到,获得积分10
10秒前
求助完成签到,获得积分10
10秒前
兮槿完成签到,获得积分10
10秒前
典雅的静完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516727
求助须知:如何正确求助?哪些是违规求助? 4609546
关于积分的说明 14516808
捐赠科研通 4546412
什么是DOI,文献DOI怎么找? 2491188
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444818