Prediction of Reactivation after Anti-VEGF Monotherapy for Retinopathy of Prematurity Using Multimodal Machine Learning models (Preprint)

预印本 早产儿视网膜病变 模式治疗法 计算机科学 医学 人工智能 万维网 内科学 怀孕 胎龄 遗传学 生物
作者
Rong Wu,Yu Zhang,Peijie Huang,Y. G. Xie,Jianxun Wang,Shuangyong Wang,Qiuxia Lin,Yichen Bai,Songfu Feng,Nian Cai,Xiaohe Lu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e60367-e60367
标识
DOI:10.2196/60367
摘要

Retinopathy of prematurity (ROP) is the leading preventable cause of childhood blindness. A timely intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is required to prevent retinal detachment with consequent vision impairment and loss. However, anti-VEGF has been reported to be associated with ROP reactivation. Therefore, an accurate prediction of reactivation after treatment is urgently needed. To develop and validate prediction models for reactivation after anti-VEGF intravitreal injection in infants with ROP using multimodal machine learning algorithms. Infants with ROP undergoing anti-VEGF treatment were recruited from 3 hospitals, and conventional machine learning, deep learning, and fusion models were constructed. The areas under the curve (AUCs), accuracy, sensitivity, and specificity were used to show the performances of the prediction models. A total of 239 cases with anti-VEGF treatment were recruited, including 90 (37.66%) with reactivation and 149 (62.34%) nonreactivation cases. The AUCs for the conventional machine learning model were 0.806 and 0.805 in the internal validation and test groups, respectively. The average AUC, sensitivity, and specificity in the test for the deep learning model were 0.787, 0.800, and 0.570, respectively. The specificity, AUC, and sensitivity for the fusion model were 0.686, 0.822, and 0.800 in a test, separately. We constructed 3 prediction models for ROP reactivation. The fusion model achieved the best performance. Using this prediction model, we could optimize strategies for treating ROP in infants and develop better screening plans after treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
twistzzz完成签到,获得积分10
刚刚
刚刚
Akim应助负责的数据线采纳,获得10
1秒前
王十发布了新的文献求助10
3秒前
3秒前
3秒前
ding应助DQ采纳,获得10
5秒前
852应助ax8888采纳,获得10
6秒前
韦昌格完成签到,获得积分10
6秒前
benj完成签到,获得积分10
8秒前
夏茉弋发布了新的文献求助10
8秒前
早日毕业完成签到,获得积分10
9秒前
12秒前
小蘑菇应助海德堡采纳,获得10
13秒前
今后应助壹贰叁肆采纳,获得10
13秒前
malele完成签到,获得积分10
14秒前
125dd发布了新的文献求助10
15秒前
纯情的浩然完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
18秒前
ding应助到江南散步采纳,获得10
20秒前
1111发布了新的文献求助10
20秒前
20秒前
tobino1完成签到,获得积分10
21秒前
fangzhang发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
22秒前
zhuxiaoer发布了新的文献求助10
23秒前
大模型应助燕子采纳,获得10
23秒前
Dazzein完成签到,获得积分10
23秒前
23秒前
顾矜应助夏茉弋采纳,获得10
23秒前
青山玉发布了新的文献求助10
24秒前
25秒前
海德堡发布了新的文献求助10
25秒前
嘿嘿应助正直的凌寒采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605800
求助须知:如何正确求助?哪些是违规求助? 4690380
关于积分的说明 14863364
捐赠科研通 4702785
什么是DOI,文献DOI怎么找? 2542289
邀请新用户注册赠送积分活动 1507901
关于科研通互助平台的介绍 1472161