WED-YOLO: A Detection Model for Safflower Under Complex Unstructured Environment

环境科学 计算机科学
作者
Zhenguo Zhang,Yunze Wang,Peng Xu,Ruimeng Shi,Zhenyu Xing,Junye Li
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 205-205
标识
DOI:10.3390/agriculture15020205
摘要

Accurate safflower recognition is a critical research challenge in the field of automated safflower harvesting. The growing environment of safflowers, including factors such as variable weather conditions in unstructured environments, shooting distances, and diverse morphological characteristics, presents significant difficulties for detection. To address these challenges and enable precise safflower target recognition in complex environments, this study proposes an improved safflower detection model, WED-YOLO, based on YOLOv8n. Firstly, the original bounding box loss function is replaced with the dynamic non-monotonic focusing mechanism Wise Intersection over Union (WIoU), which enhances the model’s bounding box fitting ability and accelerates network convergence. Then, the upsampling module in the network’s neck is substituted with the more efficient and versatile dynamic upsampling module, DySample, to improve the precision of feature map upsampling. Meanwhile, the EMA attention mechanism is integrated into the C2f module of the backbone network to strengthen the model’s feature extraction capabilities. Finally, a small-target detection layer is incorporated into the detection head, enabling the model to focus on small safflower targets. The model is trained and validated using a custom-built safflower dataset. The experimental results demonstrate that the improved model achieves Precision (P), Recall (R), mean Average Precision (mAP), and F1 score values of 93.15%, 86.71%, 95.03%, and 89.64%, respectively. These results represent improvements of 2.9%, 6.69%, 4.5%, and 6.22% over the baseline model. Compared with Faster R-CNN, YOLOv5, YOLOv7, and YOLOv10, the WED-YOLO achieved the highest mAP value. It outperforms the module mentioned by 13.06%, 4.85%, 4.86%, and 4.82%, respectively. The enhanced model exhibits superior precision and lower miss detection rates in safflower recognition tasks, providing a robust algorithmic foundation for the intelligent harvesting of safflowers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi发布了新的文献求助10
刚刚
棕熊熊应助小龙采纳,获得10
刚刚
刚刚
岁月轮回发布了新的文献求助10
1秒前
木通完成签到,获得积分10
1秒前
小白发布了新的文献求助10
1秒前
aaaaaa发布了新的文献求助10
2秒前
每每反完成签到,获得积分10
2秒前
xpc发布了新的文献求助10
2秒前
爱听歌完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
HanQing完成签到,获得积分10
3秒前
成成程完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
fang发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI5应助12138采纳,获得10
5秒前
深情安青应助落后的元灵采纳,获得30
6秒前
Y123完成签到,获得积分10
6秒前
科研通AI5应助妖孽的二狗采纳,获得10
6秒前
6秒前
欢呼的世平完成签到,获得积分10
6秒前
Ronin发布了新的文献求助10
6秒前
成成程发布了新的文献求助10
7秒前
7秒前
胡茶茶完成签到 ,获得积分10
8秒前
打打应助756333725采纳,获得10
8秒前
gguc发布了新的文献求助10
8秒前
8秒前
小蘑菇应助五六七采纳,获得10
8秒前
酷波er应助舒服的凡双采纳,获得10
8秒前
8秒前
科研通AI5应助冬瓜鑫采纳,获得10
9秒前
科研通AI2S应助fang采纳,获得10
9秒前
李健应助默默月光采纳,获得10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838094
求助须知:如何正确求助?哪些是违规求助? 3380365
关于积分的说明 10514040
捐赠科研通 3099948
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772772